Update a bunch more transformations.
[matthijs/master-project/report.git] / Chapters / Normalization.tex
index d36556beeb775495a399f554be7da5686313efad..6c9b43470dee4a4b714b08bdad4a0b5fcd23182f 100644 (file)
@@ -62,29 +62,75 @@ An example of a program in canonical form would be:
 
 \startlambda
   -- All arguments are an inital lambda
-  λx.λc.λd.
-  -- There is one let expression at the top level
+  λa.λd.λsp.
+  -- There are nested let expressions at top level
   let
+    -- Unpack the state by coercion
+    s = sp :: (Word, Word)
+    -- Extract both registers from the state
+    r1 = case s of (fst, snd) -> fst
+    r2 = case s of (fst, snd) -> snd
     -- Calling some other user-defined function.
-    s = foo x
-    -- Extracting result values from a tuple
-    a = case s of (a, b) -> a
-    b = case s of (a, b) -> b
-    -- Some builtin expressions
-    rh = add c d
-    rhh = sub d c
+    d' = foo d
     -- Conditional connections
-    rl = case b of
-      High -> rhh
+    out = case a of
+      High -> r1
+      Low -> r2
+    r1' = case a of
+      High -> d
+      Low -> r1
+    r2' = case a of
+      High -> r2
       Low -> d
-    r = case a of
-      High -> rh
-      Low -> rl
+    -- Packing a tuple
+    s' = (,) r1' r2'
+    -- Packing the state by coercion
+    sp' = s' :: State (Word, Word)
+    -- Pack our return value
+    res = (,) sp' out
   in
     -- The actual result
-    r
+    res
+\stoplambda
+
+\startlambda
+\italic{normal} = \italic{lambda}
+\italic{lambda} = λvar.\italic{lambda} (representable(typeof(var)))
+                | \italic{toplet} 
+\italic{toplet} = let \italic{binding} in \italic{toplet} 
+                | letrec [\italic{binding}] in \italic{toplet}
+                | var (representable(typeof(var)), fvar(var))
+\italic{binding} = var = \italic{rhs} (representable(typeof(rhs)))
+                 -- State packing and unpacking by coercion
+                 | var0 = var1 :: State ty (fvar(var1))
+                 | var0 = var1 :: ty (var0 :: State ty) (fvar(var1))
+\italic{rhs} = userapp
+             | builtinapp
+             -- Extractor case
+             | case var of C a0 ... an -> ai (fvar(var))
+             -- Selector case
+             | case var of (fvar(var))
+                DEFAULT -> var0 (fvar(var0))
+                C w0 ... wn -> resvar (\forall{}i, wi \neq resvar, fvar(resvar))
+\italic{userapp} = \italic{userfunc}
+                 | \italic{userapp} {userarg}
+\italic{userfunc} = var (tvar(var))
+\italic{userarg} = var (fvar(var))
+\italic{builtinapp} = \italic{builtinfunc}
+                    | \italic{builtinapp} \italic{builtinarg}
+\italic{builtinfunc} = var (bvar(var))
+\italic{builtinarg} = \italic{coreexpr}
 \stoplambda
 
+-- TODO: Define tvar, fvar, typeof, representable
+-- TODO: Limit builtinarg further
+
+-- TODO: There can still be other casts around (which the code can handle,
+e.g., ignore), which still need to be documented here.
+
+-- TODO: Note about the selector case. It just supports Bit and Bool
+currently, perhaps it should be generalized in the normal form?
+
 When looking at such a program from a hardware perspective, the top level
 lambda's define the input ports. The value produced by the let expression is
 the output port. Most function applications bound by the let expression
@@ -194,41 +240,44 @@ into expressions as far as possible. In lambda calculus, this reduction
 is known as β-reduction, but it is of course only defined for
 applications of lambda abstractions. We extend this reduction to also
 work for the rest of core (case and let expressions).
-\startbuffer[from]
+
+For let expressions:
+\starttrans
+let binds in E) M
+-----------------
+let binds in E M
+\stoptrans
+
+For case statements:
+\starttrans
 (case x of
   p1 -> E1
   \vdots
   pn -> En) M
-\stopbuffer
-\startbuffer[to]
+-----------------
 case x of
   p1 -> E1 M
   \vdots
   pn -> En M
-\stopbuffer
+\stoptrans
 
-%\transform{Extended β-reduction}
-%{
-%\conclusion
-%\trans{(λx.E) M}{E[M/x]}
-%
-%\nextrule
-%\conclusion
-%\trans{(let binds in E) M}{let binds in E M}
-%
-%\nextrule
-%\conclusion
-%\transbuf{from}{to}
-%}
+For lambda expressions:
+\starttrans
+(λx.E) M
+-----------------
+E[M/x]
+\stoptrans
 
+% And an example
 \startbuffer[from]
-let a = (case x of 
-           True -> id
-           False -> neg
-        ) 1
-    b = (let y = 3 in add y) 2
-in
-  (λz.add 1 z) 3
+( let a = (case x of 
+            True -> id
+            False -> neg
+          ) 1
+      b = (let y = 3 in add y) 2
+  in
+    (λz.add 1 z)
+) 3
 \stopbuffer
 
 \startbuffer[to]
@@ -242,6 +291,339 @@ in
 
 \transexample{Extended β-reduction}{from}{to}
 
+\subsection{Let derecursification}
+This transformation is meant to make lets non-recursive whenever possible.
+This might allow other optimizations to do their work better. TODO: Why is
+this needed exactly?
+
+\subsection{Let flattening}
+This transformation puts nested lets in the same scope, by lifting the
+binding(s) of the inner let into a new let around the outer let. Eventually,
+this will cause all let bindings to appear in the same scope (they will all be
+in scope for the function return value).
+
+Note that this transformation does not try to be smart when faced with
+recursive lets, it will just leave the lets recursive (possibly joining a
+recursive and non-recursive let into a single recursive let). The let
+rederursification transformation will do this instead.
+
+\starttrans
+letnonrec x = (let bindings in M) in N
+------------------------------------------
+let bindings in (letnonrec x = M) in N
+\stoptrans
+
+\starttrans
+letrec 
+  \vdots
+  x = (let bindings in M)
+  \vdots
+in
+  N
+------------------------------------------
+letrec
+  \vdots
+  bindings
+  x = M
+  \vdots
+in
+  N
+\stoptrans
+
+\startbuffer[from]
+let
+  a = letrec
+    x = 1
+    y = 2
+  in
+    x + y
+in
+  letrec
+    b = let c = 3 in a + c
+    d = 4
+  in
+    d + b
+\stopbuffer
+\startbuffer[to]
+letrec
+  x = 1
+  y = 2
+in
+  let
+    a = x + y
+  in
+    letrec
+      c = 3
+      b = a + c
+      d = 4
+    in
+      d + b
+\stopbuffer
+
+\transexample{Let flattening}{from}{to}
+
+\subsection{Empty let removal}
+This transformation is simple: It removes recursive lets that have no bindings
+(which usually occurs when let derecursification removes the last binding from
+it).
+
+\starttrans
+letrec in M
+--------------
+M
+\stoptrans
+
+\subsection{Simple let binding removal}
+This transformation inlines simple let bindings (\eg a = b).
+
+This transformation is not needed to get into normal form, but makes the
+resulting VHDL a lot shorter.
+
+\starttrans
+letnonrec
+  a = b
+in
+  M
+-----------------
+M[b/a]
+\stoptrans
+
+\starttrans
+letrec
+  \vdots
+  a = b
+  \vdots
+in
+  M
+-----------------
+let
+  \vdots [b/a]
+  \vdots [b/a]
+in
+  M[b/a]
+\stoptrans
+
+\subsection{Unused let binding removal}
+This transformation removes let bindings that are never used. Usually,
+the desugarer introduces some unused let bindings.
+
+This normalization pass should really be unneeded to get into normal form
+(since ununsed bindings are not forbidden by the normal form), but in practice
+the desugarer or simplifier emits some unused bindings that cannot be
+normalized (e.g., calls to a \type{PatError} (TODO: Check this name)). Also,
+this transformation makes the resulting VHDL a lot shorter.
+
+\starttrans
+let a = E in M
+----------------------------    \lam{a} does not occur free in \lam{M}
+M
+\stoptrans
+
+\starttrans
+letrec
+  \vdots
+  a = E
+  \vdots
+in
+  M
+----------------------------    \lam{a} does not occur free in \lam{M}
+letrec
+  \vdots
+  \vdots
+in
+  M
+\stoptrans
+
+\subsection{Non-representable binding inlining}
+This transform inlines let bindings that have a non-representable type. Since
+we can never generate a signal assignment for these bindings (we cannot
+declare a signal assignment with a non-representable type, for obvious
+reasons), we have no choice but to inline the binding to remove it.
+
+If the binding is non-representable because it is a lambda abstraction, it is
+likely that it will inlined into an application and β-reduction will remove
+the lambda abstraction and turn it into a representable expression at the
+inline site. The same holds for partial applications, which can be turned into
+full applications by inlining.
+
+Other cases of non-representable bindings we see in practice are primitive
+Haskell types. In most cases, these will not result in a valid normalized
+output, but then the input would have been invalid to start with. There is one
+exception to this: When a builtin function is applied to a non-representable
+expression, things might work out in some cases. For example, when you write a
+literal \hs{SizedInt} in Haskell, like \hs{1 :: SizedInt D8}, this results in
+the following core: \lam{fromInteger (smallInteger 10)}, where for example
+\lam{10 :: GHC.Prim.Int\#} and \lam{smallInteger 10 :: Integer} have
+non-representable types. TODO: This/these paragraph(s) should probably become a
+separate discussion somewhere else.
+
+\starttrans
+letnonrec a = E in M
+--------------------------    \lam{E} has a non-representable type.
+M[E/a]
+\stoptrans
+
+\starttrans
+letrec 
+  \vdots
+  a = E
+  \vdots
+in
+  M
+--------------------------    \lam{E} has a non-representable type.
+letrec
+  \vdots [E/a]
+  \vdots [E/a]
+in
+  M[E/a]
+\stoptrans
+
+\startbuffer[from]
+letrec
+  a = smallInteger 10
+  inc = λa -> add a 1
+  inc' = add 1
+  x = fromInteger a 
+in
+  inc (inc' x)
+\stopbuffer
+
+\startbuffer[to]
+letrec
+  x = fromInteger (smallInteger 10)
+in
+  (λa -> add a 1) (add 1 x)
+\stopbuffer
+
+\transexample{Let flattening}{from}{to}
+
+\subsection{Compiler generated top level binding inlining}
+TODO
+
+\subsection{Scrutinee simplification}
+This transform ensures that the scrutinee of a case expression is always
+a simple variable reference.
+
+\starttrans
+case E of
+  alts
+-----------------        \lam{E} is not a local variable reference
+let x = E in 
+  case E of
+    alts
+\stoptrans
+
+\startbuffer[from]
+case (foo a) of
+  True -> a
+  False -> b
+\stopbuffer
+
+\startbuffer[to]
+let x = foo a in
+  case x of
+    True -> a
+    False -> b
+\stopbuffer
+
+\transexample{Let flattening}{from}{to}
+
+
+\subsection{Case simplification}
+This transformation ensures that all case expressions become normal form. This
+means they will become one of:
+\startitemize
+\item An extractor case with a single alternative that picks a single field
+from a datatype, \eg \lam{case x of (a, b) -> a}.
+\item A selector case with multiple alternatives and only wild binders, that
+makes a choice between expressions based on the constructor of another
+expression, \eg \lam{case x of Low -> a; High -> b}.
+\stopitemize
+
+\starttrans
+case E of
+  C0 v0,0 ... v0,m -> E0
+  \vdots
+  Cn vn,0 ... vn,m -> En
+--------------------------------------------------- \forall i \forall j, 0 <= i <= n, 0 <= i < m (\lam{wi,j} is a wild (unused) binder)
+letnonrec
+  v0,0 = case x of C0 v0,0 .. v0,m -> v0,0
+  \vdots
+  v0,m = case x of C0 v0,0 .. v0,m -> v0,m
+  x0 = E0
+  \dots
+  vn,m = case x of Cn vn,0 .. vn,m -> vn,m
+  xn = En
+in
+  case E of
+    C0 w0,0 ... w0,m -> x0
+    \vdots
+    Cn wn,0 ... wn,m -> xn
+\stoptrans
+
+TODO: This transformation specified like this is complicated and misses
+conditions to prevent looping with itself. Perhaps we should split it here for
+discussion?
+
+\startbuffer[from]
+case a of
+  True -> add b 1
+  False -> add b 2
+\stopbuffer
+
+\startbuffer[to]
+letnonrec
+  x0 = add b 1
+  x1 = add b 2
+in
+  case a of
+    True -> x0
+    False -> x1
+\stopbuffer
+
+\transexample{Selector case simplification}{from}{to}
+
+\startbuffer[from]
+case a of
+  (,) b c -> add b c
+\stopbuffer
+\startbuffer[to]
+letnonrec
+  b = case a of (,) b c -> b
+  c = case a of (,) b c -> c
+  x0 = add b c
+in
+  case a of
+    (,) w0 w1 -> x0
+\stopbuffer
+
+\transexample{Extractor case simplification}{from}{to}
+
+\subsection{Case removal}
+This transform removes any case statements with a single alternative and
+only wild binders.
+
+These "useless" case statements are usually leftovers from case simplification
+on extractor case (see the previous example).
+
+\starttrans
+case x of
+  C v0 ... vm -> E
+----------------------     \lam{\forall i, 0 <= i <= m} (\lam{vi} does not occur free in E)
+E
+\stoptrans
+
+\startbuffer[from]
+case a of
+  (,) w0 w1 -> x0
+\stopbuffer
+
+\startbuffer[to]
+x0
+\stopbuffer
+
+\transexample{Case removal}{from}{to}
+
 \subsection{Argument simplification}
 The transforms in this section deal with simplifying application
 arguments into normal form. The goal here is to:
@@ -249,8 +631,9 @@ arguments into normal form. The goal here is to:
 \startitemize
  \item Make all arguments of user-defined functions (\eg, of which
  we have a function body) simple variable references of a runtime
- representable type.
- \item Make all arguments of builtin functions either:
+ representable type. This is needed, since these applications will be turned
+ into component instantiations.
+ \item Make all arguments of builtin functions one of:
    \startitemize
     \item A type argument.
     \item A dictionary argument.
@@ -278,8 +661,23 @@ divide them into two categories:
         VHDL. To remove them, we create a specialized version of the
         called function with these arguments filled in. This is done by
         the argument propagation transform.
+
+        Typically, these arguments are type and dictionary arguments that are
+        used to make functions polymorphic. By propagating these arguments, we
+        are essentially doing the same which GHC does when it specializes
+        functions: Creating multiple variants of the same function, one for
+        each type for which it is used. Other common non-representable
+        arguments are functions, e.g. when calling a higher order function
+        with another function or a lambda abstraction as an argument.
+
+        The reason for doing this is similar to the reasoning provided for
+        the inlining of non-representable let bindings above. In fact, this
+        argument propagation could be viewed as a form of cross-function
+        inlining.
 \stopitemize
 
+TODO: Check the following itemization.
+
 When looking at the arguments of a builtin function, we can divide them
 into categories: 
 
@@ -362,9 +760,10 @@ into categories:
         categories instead.
 \stopitemize
 
-\subsubsection{Argument extraction}
+\subsubsection{Argument simplification}
 This transform deals with arguments to functions that
-are of a runtime representable type. 
+are of a runtime representable type. It ensures that they will all become
+references to global variables, or local signals in the resulting VHDL. 
 
 TODO: It seems we can map an expression to a port, not only a signal.
 Perhaps this makes this transformation not needed?
@@ -377,16 +776,21 @@ a new let expression around the application, which binds the complex
 expression to a new variable. The original function is then applied to
 this variable.
 
-%\transform{Argument extract}
-%{
-%\lam{Y} is of a hardware representable type
-%
-%\lam{Y} is not a variable referene
-%
-%\conclusion
-%
-%\trans{X Y}{let z = Y in X z}
-%}
+\starttrans
+M N
+--------------------    \lam{N} is of a representable type
+let x = N in M x        \lam{N} is not a local variable reference
+\stoptrans
+
+\startbuffer[from]
+add (add a 1) 1
+\stopbuffer
+
+\startbuffer[to]
+let x = add a 1 in add x 1
+\stopbuffer
+
+\transexample{Argument extraction}{from}{to}
 
 \subsubsection{Function extraction}
 This transform deals with function-typed arguments to builtin functions.
@@ -398,24 +802,36 @@ parameters to the new global function. The original argument is replaced
 with a reference to the new function, applied to any free variables from
 the original argument.
 
-%\transform{Function extraction}
-%{
-%\lam{X} is a (partial application of) a builtin function
-%
-%\lam{Y} is not an application
-%
-%\lam{Y} is not a variable reference
-%
-%\conclusion
-%
-%\lam{f0 ... fm} = free local vars of \lam{Y}
-%
-%\lam{y} is a new global variable
-%
-%\lam{y = λf0 ... fn.Y}
-%
-%\trans{X Y}{X (y f0 ... fn)}
-%}
+This transformation is useful when applying higher order builtin functions
+like \hs{map} to a lambda abstraction, for example. In this case, the code
+that generates VHDL for \hs{map} only needs to handle top level functions and
+partial applications, not any other expression (such as lambda abstractions or
+even more complicated expressions).
+
+\starttrans
+M N                     \lam{M} is a (partial aplication of a) builtin function.
+---------------------   \lam{f0 ... fn} = free local variables of \lam{N}
+M x f0 ... fn           \lam{N :: a -> b}
+~                       \lam{N} is not a (partial application of) a top level function
+x = λf0 ... λfn.N
+\stoptrans
+
+\startbuffer[from]
+map (λa . add a b) xs
+
+map (add b) ys
+\stopbuffer
+
+\startbuffer[to]
+x0 = λb.λa.add a b
+~
+map x0 xs
+
+x1 = λb.add b
+map x1 ys
+\stopbuffer
+
+\transexample{Function extraction}{from}{to}
 
 \subsubsection{Argument propagation}
 This transform deals with arguments to user-defined functions that are
@@ -472,69 +888,67 @@ translatable. A user-defined function is any other function.
 \starttrans
 x = E
 ~
-x Y0 ... Yi ... Yn                               \lam{Y_i} is not of a runtime representable type
----------------------------------------------    \lam{Y_i} is not a local variable reference
-x' = λy0 ... yi-1 f0 ... fm yi+1 ... yn .        \lam{f0 ... fm} = free local vars of \lam{Y_i}
-      E y0 ... yi-1 Yi yi+1 ... yn   
+x Y0 ... Yi ... Yn                               \lam{Yi} is not of a runtime representable type
+---------------------------------------------    \lam{Yi} is not a local variable reference
+x' y0 ... yi-1 f0 ...  fm Yi+1 ... Yn            \lam{f0 ... fm} = free local vars of \lam{Yi}
 ~
-x' y0 ... yi-1 f0 ...  fm Yi+1 ... Yn
+x' = λy0 ... yi-1 f0 ... fm yi+1 ... yn .       
+      E y0 ... yi-1 Yi yi+1 ... yn   
+
 \stoptrans
 
-%\transform{Argument propagation}
-%{
-%\lam{x} is a global variable, bound to a user-defined function
-%
-%\lam{x = E}
-%
-%\lam{Y_i} is not of a runtime representable type
-%
-%\lam{Y_i} is not a local variable reference
-%
-%\conclusion
-%
-%\lam{f0 ... fm} = free local vars of \lam{Y_i}
-%
-%\lam{x'} is a new global variable
-%
-%\lam{x' = λy0 ... yi-1 f0 ... fm yi+1 ... yn . E y0 ... yi-1 Yi yi+1 ... yn}
-%
-%\trans{x Y0 ... Yi ... Yn}{x' y0 ... yi-1 f0 ... fm Yi+1 ... Yn}
-%}
-%
-%TODO: The above definition looks too complicated... Can we find
-%something more concise?
-
-\subsection{Cast propagation}
-This transform pushes casts down into the expression as far as possible.
-\subsection{Let recursification}
-This transform makes all lets recursive.
-\subsection{Let simplification}
-This transform makes the result value of all let expressions a simple
-variable reference.
-\subsection{Let flattening}
-This transform turns two nested lets (\lam{let x = (let ... in ...) in
-...}) into a single let.
-\subsection{Simple let binding removal}
-This transforms inlines simple let bindings (\eg a = b).
-\subsection{Function inlining}
-This transform inlines let bindings of a funtion type. TODO: This should
-be generelized to anything that is non representable at runtime, or
-something like that.
-\subsection{Scrutinee simplification}
-This transform ensures that the scrutinee of a case expression is always
-a simple variable reference.
-\subsection{Case binder wildening}
-This transform replaces all binders of a each case alternative with a
-wild binder (\ie, one that is never referred to). This will possibly
-introduce a number of new "selector" case statements, that only select
-one element from an algebraic datatype and bind it to a variable.
-\subsection{Case value simplification}
-This transform simplifies the result value of each case alternative by
-binding the value in a let expression and replacing the value by a
-simple variable reference.
-\subsection{Case removal}
-This transform removes any case statements with a single alternative and
-only wild binders.
+TODO: Example
+
+\subsection{Cast propagation / simplification}
+This transform pushes casts down into the expression as far as possible. Since
+its exact role and need is not clear yet, this transformation is not yet
+specified.
+
+\subsection{Return value simplification}
+This transformation ensures that the return value of a function is always a
+simple local variable reference.
+
+Currently implemented using lambda simplification, let simplification, and
+top simplification. Should change into something like the following, which
+works only on the result of a function instead of any subexpression. This is
+achieved by the contexts, like \lam{x = E}, though this is strictly not
+correct (you could read this as "if there is any function \lam{x} that binds
+\lam{E}, any \lam{E} can be transformed, while we only mean the \lam{E} that
+is bound by \lam{x}. This might need some extra notes or something).
+
+\starttrans
+x = E                            \lam{E} is representable
+~                                \lam{E} is not a lambda abstraction
+E                                \lam{E} is not a let expression
+---------------------------      \lam{E} is not a local variable reference
+let x = E in x
+\stoptrans
+
+\starttrans
+x = λv0 ... λvn.E
+~                                \lam{E} is representable
+E                                \lam{E} is not a let expression
+---------------------------      \lam{E} is not a local variable reference
+let x = E in x
+\stoptrans
+
+\starttrans
+x = λv0 ... λvn.let ... in E
+~                                \lam{E} is representable
+E                                \lam{E} is not a local variable reference
+---------------------------
+let x = E in x
+\stoptrans
+
+\startbuffer[from]
+x = add 1 2
+\stopbuffer
+
+\startbuffer[to]
+x = let x = add 1 2 in x
+\stopbuffer
+
+\transexample{Return value simplification}{from}{to}
 
 \subsection{Example sequence}
 
@@ -779,4 +1193,3 @@ After let bind removal:
 \stoplambda
 
 Application simplification is not applicable.
-\stoptext