Put one more 0 in another font.
[matthijs/master-project/report.git] / Chapters / Prototype.tex
index 40663f37cf2edb95d728da97f2e41d7e4e1cbc4b..e5cbb9df65b536214816eed6a2808359e7d86f90 100644 (file)
   describe here.
 
   \section[sec:prototype:input]{Input language}
-    When implementing this prototype, the first question to ask is: What
-    (functional) language will we use to describe our hardware? (Note that
-    this does not concern the \emph{implementation language} of the compiler,
-    just the language \emph{translated by} the compiler).
+    When implementing this prototype, the first question to ask is:
+    Which (functional) language will be used to describe our hardware?
+    (Note that this does not concern the \emph{implementation language}
+    of the compiler, just the language \emph{translated by} the
+    compiler).
 
     Initially, we have two choices:
 
@@ -40,7 +41,7 @@
 
       Note that in this consideration, embedded domain-specific
       languages (\small{EDSL}) and Template Haskell (\small{TH})
-      approaches have not been included. As we've seen in
+      approaches have not been included. As we have seen in
       \in{section}[sec:context:fhdls], these approaches have all kinds
       of limitations on the description language that we would like to
       avoid.
@@ -52,7 +53,7 @@
     lots of work!), using an existing language is the obvious choice. This
     also has the advantage that a large set of language features is available
     to experiment with and it is easy to find which features apply well and
-    which don't. A possible second prototype could use a custom language with
+    which do not. A possible second prototype could use a custom language with
     just the useful features (and possibly extra features that are specific to
     the domain of hardware description as well).
 
     Haskell an obvious choice.
 
   \section[sec:prototype:output]{Output format}
-    The second important question is: What will be our output format? Since
-    our prototype won't be able to program FPGA's directly, we'll have to have
-    output our hardware in some format that can be later processed and
-    programmed by other tools.
+    The second important question is: What will be our output format?
+    This output format should at least allow for programming the
+    hardware design into a field-programmable gate array (\small{FPGA}).
+    The choice of output format is thus limited by what hardware
+    synthesis and programming tools can process.
 
     Looking at other tools in the industry, the Electronic Design Interchange
     Format (\small{EDIF}) is commonly used for storing intermediate
@@ -85,7 +87,7 @@
     This means that when working with \small{EDIF}, our prototype would become
     technology dependent (\eg only work with \small{FPGA}s of a specific
     vendor, or even only with specific chips). This limits the applicability
-    of our prototype. Also, the tools we'd like to use for verifying,
+    of our prototype. Also, the tools we would like to use for verifying,
     simulating and draw pretty pictures of our output (like Precision, or
     QuestaSim) are designed for \small{VHDL} or Verilog input.
 
 
     An added advantage of using VHDL is that we can profit from existing
     optimizations in VHDL synthesizers. A lot of optimizations are done on the
-    VHDL level by existing tools. These tools have years of experience in this
-    field, so it would not be reasonable to assume we could achieve a similar
-    amount of optimization in our prototype (nor should it be a goal,
-    considering this is just a prototype).
+    VHDL level by existing tools. These tools have been under
+    development for years, so it would not be reasonable to assume we
+    could achieve a similar amount of optimization in our prototype (nor
+    should it be a goal, considering this is just a prototype).
 
     Note that we will be using \small{VHDL} as our output language, but will
     not use its full expressive power. Our output will be limited to using
-    simple, structural descriptions, without any behavioural descriptions
-    (which might not be supported by all tools). This ensures that any tool
-    that works with \VHDL will understand our output (most tools don't support
-    synthesis of more complex \VHDL). This also leaves open the option to
-    switch to \small{EDIF} in the future, with minimal changes to the
+    simple, structural descriptions, without any complex behavioural
+    descriptions like arbitrary sequential statements (which might not
+    be supported by all tools). This ensures that any tool that works
+    with \VHDL will understand our output (most tools do not support
+    synthesis of more complex \VHDL).  This also leaves open the option
+    to switch to \small{EDIF} in the future, with minimal changes to the
     prototype.
 
   \section[sec:prototype:design]{Prototype design}
     As suggested above, we will use the Glasgow Haskell Compiler (\small{GHC}) to
     implement our prototype compiler. To understand the design of the
-    compiler, we will first dive into the \small{GHC} compiler a bit. It's
+    compiler, we will first dive into the \small{GHC} compiler a bit. Its
     compilation consists of the following steps (slightly simplified):
 
     \startuseMPgraphic{ghc-pipeline}
       % Create objects
       save inp, front, desugar, simpl, back, out;
       newEmptyBox.inp(0,0);
-      newBox.front(btex Fronted etex);
+      newBox.front(btex Frontend etex);
       newBox.desugar(btex Desugarer etex);
       newBox.simpl(btex Simplifier etex);
       newBox.back(btex Backend etex);
       discuss it any further, since it is not required for our prototype.
     \stopdesc
 
-    In this process, there a number of places where we can start our work.
-    Assuming that we don't want to deal with (or modify) parsing, typechecking
-    and other frontend business and that native code isn't really a useful
+    In this process, there are a number of places where we can start our work.
+    Assuming that we do not want to deal with (or modify) parsing, typechecking
+    and other frontend business and that native code is not really a useful
     format anymore, we are left with the choice between the full Haskell
     \small{AST}, or the smaller (simplified) core representation.
 
     The advantage of taking the full \small{AST} is that the exact structure
     of the source program is preserved. We can see exactly what the hardware
-    descriiption looks like and which syntax constructs were used. However,
+    description looks like and which syntax constructs were used. However,
     the full \small{AST} is a very complicated datastructure. If we are to
     handle everything it offers, we will quickly get a big compiler.
 
     Using the core representation gives us a much more compact datastructure
     (a core expression only uses 9 constructors). Note that this does not mean
-    that the core representation itself is smaller, on the contrary. Since the
-    core language has less constructs, a lot of things will take a larger
-    expression to express.
+    that the core representation itself is smaller, on the contrary.
+    Since the core language has less constructs, most Core expressions
+    are larger than the equivalent versions in Haskell.
 
     However, the fact that the core language is so much smaller, means it is a
     lot easier to analyze and translate it into something else. For the same
     reason, \small{GHC} runs its simplifications and optimizations on the core
-    representation as well.
+    representation as well \cite[jones96].
 
     However, we will use the normal core representation, not the simplified
     core. Reasons for this are detailed below. \todo{Ref}
       % Create objects
       save inp, front, norm, vhdl, out;
       newEmptyBox.inp(0,0);
-      newBox.front(btex \small{GHC} frontend + desugarer etex);
+      newBox.front(btex \small{GHC} frontend etex);
       newBox.norm(btex Normalization etex);
       newBox.vhdl(btex \small{VHDL} generation etex);
       newEmptyBox.out(0,0);
     \placefigure[right]{Cλash compiler pipeline}{\useMPgraphic{clash-pipeline}}
 
     \startdesc{Frontend}
-      This is exactly the frontend and desugarer from the \small{GHC}
-      pipeline, that translates Haskell sources to a core representation.
+      This is exactly the frontend from the \small{GHC} pipeline, that
+      translates Haskell sources to a typed Core representation.
     \stopdesc
     \startdesc{Normalization}
       This is a step that transforms the core representation into a normal
       form. This normal form is still expressed in the core language, but has
-      to adhere to an extra set of constraints. This normal form is less
-      expressive than the full core language (e.g., it can have limited higher
-      order expressions, has a specific structure, etc.), but is also very
-      close to directly describing hardware.
+      to adhere to an additional set of constraints. This normal form is less
+      expressive than the full core language (e.g., it can have limited 
+      higher-order expressions, has a specific structure, etc.), but is
+      also very close to directly describing hardware.
     \stopdesc
     \startdesc{\small{VHDL} generation}
       The last step takes the normal formed core representation and generates
     hardware interpretation, are removed and translated into hardware
     constructs. This step is described in a lot of detail at
     \in{chapter}[chap:normalization].
+
+    
+    \defref{entry function}Translation of a hardware description always
+    starts at a single function, which is referred to as the \emph{entry
+    function}. \VHDL is generated for this function first, followed by
+    any functions used by the entry functions (recursively).
     
-  \section{The Core language}
+  \section[sec:prototype:core]{The Core language}
     \defreftxt{core}{the Core language}
     Most of the prototype deals with handling the program in the Core
     language. In this section we will show what this language looks like and
     binder (the function name) to an expression (the function value, which has
     a function type).
 
-    The Core language itself does not prescribe any program structure, only
-    expression structure. In the \small{GHC} compiler, the Haskell module
-    structure is used for the resulting Core code as well. Since this is not
-    so relevant for understanding the Core language or the Normalization
-    process, we'll only look at the Core expression language here.
+    The Core language itself does not prescribe any program structure
+    (like modules, declarations, imports, etc.), only expression
+    structure. In the \small{GHC} compiler, the Haskell module structure
+    is used for the resulting Core code as well. Since this is not so
+    relevant for understanding the Core language or the Normalization
+    process, we will only look at the Core expression language here.
 
     Each Core expression consists of one of these possible expressions.
 
     \startdesc{Variable reference}
       \defref{variable reference}
       \startlambda
-      x :: T
+      bndr :: T
       \stoplambda
-      This is a reference to a binder. It's written down as the
+      This is a reference to a binder. It is written down as the
       name of the binder that is being referred to along with its type. The
-      binder name should of course be bound in a containing scope (including
-      top level scope, so a reference to a top level function is also a
-      variable reference). Additionally, constructors from algebraic datatypes
-      also become variable references.
+      binder name should of course be bound in a containing scope
+      (including top level scope, so a reference to a top level function
+      is also a variable reference). Additionally, constructors from
+      algebraic datatypes also become variable references.
 
-      The value of this expression is the value bound to the given binder.
+      In our examples, binders will commonly consist of a single
+      characters, but they can have any length.
+
+      The value of this expression is the value bound to the given
+      binder.
 
       Each binder also carries around its type (explicitly shown above), but
       this is usually not shown in the Core expressions. Only when the type is
       \stoplambda
       This is a literal. Only primitive types are supported, like
       chars, strings, ints and doubles. The types of these literals are the
-      \quote{primitive} versions, like \lam{Char\#} and \lam{Word\#}, not the
-      normal Haskell versions (but there are builtin conversion functions).
+      \quote{primitive}, unboxed versions, like \lam{Char\#} and \lam{Word\#}, not the
+      normal Haskell versions (but there are built-in conversion
+      functions). Without going into detail about these types, note that
+      a few conversion functions exist to convert these to the normal
+      (boxed) Haskell equivalents.
     \stopdesc
 
     \startdesc{Application}
       parts: The function part and the argument part. Applications are used
       for normal function \quote{calls}, but also for applying type
       abstractions and data constructors.
+
+      In core, there is no distinction between an operator and a
+      function. This means that, for example the addition of two numbers
+      looks like the following in Core:
       
+      \startlambda
+      (+) 1 2
+      \stoplambda
+
+      Where the function \quote{\lam{(+)}} is applied to the numbers 1
+      and 2. However, to increase readability, an application of an
+      operator like \lam{(+)} is sometimes written infix. In this case,
+      the parenthesis are also left out, just like in Haskell. In other
+      words, the following means exactly the same as the addition above:
+
+      \startlambda
+      1 + 2
+      \stoplambda
+
       The value of an application is the value of the function part, with the
       first argument binder bound to the argument part.
     \stopdesc
       \startlambda
       λbndr.body
       \stoplambda
-      This is the basic lambda abstraction, as it occurs in labmda calculus.
+      This is the basic lambda abstraction, as it occurs in lambda calculus.
       It consists of a binder part and a body part.  A lambda abstraction
       creates a function, that can be applied to an argument. The binder is
       usually a value binder, but it can also be a \emph{type binder} (or
       variable, which can be used in types later on. See
       \in{section}[sec:prototype:coretypes] for details.
      
-      Note that the body of a lambda abstraction extends all the way to the
-      end of the expression, or the closing bracket surrounding the lambda. In
-      other words, the lambda abstraction \quote{operator} has the lowest
-      priority of all.
+      The body of a lambda abstraction extends all the way to the end of
+      the expression, or the closing bracket surrounding the lambda. In
+      other words, the lambda abstraction \quote{operator} has the
+      lowest priority of all.
 
       The value of an application is the value of the body part, with the
       binder bound to the value the entire lambda abstraction is applied to.
       let bndr = value in body
       \stoplambda
       A let expression allows you to bind a binder to some value, while
-      evaluating to some other value (where that binder is in scope). This
+      evaluating to some other value (for which that binder is in scope). This
       allows for sharing of subexpressions (you can use a binder twice) and
-      explicit \quote{naming} of arbitrary expressions. Note that the binder
-      is not in scope in the value bound to it, so it's not possible to make
-      recursive definitions with the normal form of the let expression (see
-      the recursive form below).
+      explicit \quote{naming} of arbitrary expressions. A binder is not
+      in scope in the value bound it is bound to, so it is not possible
+      to make recursive definitions with a non-recursive let expression
+      (see the recursive form below).
 
       Even though this let expression is an extension on the basic lambda
       calculus, it is easily translated to a lambda abstraction. The let
       Core implementation, non-recursive and recursive lets are not so
       distinct as we present them here, but this provides a clearer overview.
       
-      The main difference with the normal let expression is that each of the
-      binders is in scope in each of the values, in addition to the body. This
+      The main difference with the normal let expression is that it can
+      contain multiple bindings (or even none) and each of the binders
+      is in scope in each of the values, in addition to the body. This
       allows for self-recursive or mutually recursive definitions.
 
-      It should also be possible to express a recursive let using normal
-      lambda calculus, if we use the \emph{least fixed-point operator},
-      \lam{Y}. This falls beyond the scope of this report, since it is not
-      needed for this research.
+      It is also possible to express a recursive let expression using
+      normal lambda calculus, if we use the \emph{least fixed-point
+      operator}, \lam{Y} (but the details are too complicated to help
+      clarify the let expression, so this will not be explored further).
     \stopdesc
 
+    \placeintermezzo{}{
+      \startframedtext[width=8cm,background=box,frame=no]
+      \startalignment[center]
+        {\tfa Weak head normal form (\small{WHNF})}
+      \stopalignment
+      \blank[medium]
+        An expression is in weak head normal form if it is either an
+        constructor application or lambda abstraction. \todo{How about
+        atoms?}
+
+        Without going into detail about the differences with head
+        normal form and normal form, note that evaluating the scrutinee
+        of a case expression to normal form (evaluating any function
+        applications, variable references and case expressions) is
+        sufficient to decide which case alternatives should be chosen.
+        \todo{ref?}
+      \stopframedtext
+
+    }
+
     \startdesc{Case expression}
       \defref{case expression}
       \startlambda
           Cn bndrn,0 ... bndrn,m -> bodyn
       \stoplambda
 
-      \todo{Define WHNF}
-
       A case expression is the only way in Core to choose between values. All
       \hs{if} expressions and pattern matchings from the original Haskell
       PRogram have been translated to case expressions by the desugarer. 
       
       A case expression evaluates its scrutinee, which should have an
       algebraic datatype, into weak head normal form (\small{WHNF}) and
-      (optionally) binds it to \lam{bndr}. It then chooses a body depending on
-      the constructor of its scrutinee. If none of the constructors match, the
-      \lam{DEFAULT} alternative is chosen. A case expression must always be
-      exhaustive, \ie it must cover all possible constructors that the
-      scrutinee can have (if all of them are covered explicitly, the
-      \lam{DEFAULT} alternative can be left out).
+      (optionally) binds it to \lam{bndr}. Every alternative lists a
+      single constructor (\lam{C0 ... Cn}). Based on the actual
+      constructor of the scrutinee, the corresponding alternative is
+      chosen. The binders in the chosen alternative (\lam{bndr0,0 ....
+      bndr0,m} are bound to the actual arguments to the constructor in
+      the scrutinee.
+
+      This is best illustrated with an example. Assume
+      there is an algebraic datatype declared as follows\footnote{This
+      datatype is not suported by the current Cλash implementation, but
+      serves well to illustrate the case expression}:
+
+      \starthaskell
+      data D = A Word | B Bit
+      \stophaskell
+
+      This is an algebraic datatype with two constructors, each getting
+      a single argument. A case expression scrutinizing this datatype
+      could look like the following:
+
+      \startlambda
+        case s of
+          A word -> High
+          B bit -> bit
+      \stoplambda
+
+      What this expression does is check the constructor of the
+      scrutinee \lam{s}. If it is \lam{A}, it always evaluates to
+      \lam{High}. If the constructor is \lam{B}, the binder \lam{bit} is
+      bound to the argument passed to \lam{B} and the case expression
+      evaluates to this bit.
+      
+      If none of the alternatives match, the \lam{DEFAULT} alternative
+      is chosen. A case expression must always be exhaustive, \ie it
+      must cover all possible constructors that the scrutinee can have
+      (if all of them are covered explicitly, the \lam{DEFAULT}
+      alternative can be left out).
       
       Since we can only match the top level constructor, there can be no overlap
       in the alternatives and thus order of alternatives is not relevant (though
       the \lam{DEFAULT} alternative must appear first for implementation
       efficiency).
       
-      Any arguments to the constructor in the scrutinee are bound to each of the
-      binders after the constructor and are in scope only in the corresponding
-      body.
-
       To support strictness, the scrutinee is always evaluated into
       \small{WHNF}, even when there is only a \lam{DEFAULT} alternative. This
       allows aplication of the strict function \lam{f} to the argument \lam{a}
     
       Here, there is only a single alternative (but no \lam{DEFAULT}
       alternative, since the single alternative is already exhaustive). When
-      it's body is evaluated, the arguments to the tuple constructor \lam{(,)}
+      its body is evaluated, the arguments to the tuple constructor \lam{(,)}
       (\eg, the elements of the tuple) are bound to \lam{a} and \lam{b}.
     \stopdesc
 
       Note that this syntax is also used sometimes to indicate that a particular
       expression has a particular type, even when no cast expression is
       involved. This is then purely informational, since the only elements that
-      are explicitely typed in the Core language are the binder references and
+      are explicitly typed in the Core language are the binder references and
       cast expressions, the types of all other elements are determined at
       runtime.
     \stopdesc
     \startdesc{Note}
       The Core language in \small{GHC} allows adding \emph{notes}, which serve
       as hints to the inliner or add custom (string) annotations to a core
-      expression. These shouldn't be generated normally, so these are not
+      expression. These should not be generated normally, so these are not
       handled in any way in the prototype.
     \stopdesc
 
     \startdesc{Type}
       \defref{type expression}
       \startlambda
-      @type
+      @T
       \stoplambda
-      It is possibly to use a Core type as a Core expression. For the actual
-      types supported by Core, see \in{section}[sec:prototype:coretypes]. This
-      \quote{lifting} of a type into the value domain is done to allow for
-      type abstractions and applications to be handled as normal lambda
-      abstractions and applications above. This means that a type expression
-      in Core can only ever occur in the argument position of an application,
-      and only if the type of the function that is applied to expects a type
-      as the first argument. This happens for all polymorphic functions, for
-      example, the \lam{fst} function:
+      It is possibly to use a Core type as a Core expression. To prevent
+      confusion between types and values, the \lam{@} sign is used to
+      explicitly mark a type that is used in a Core expression.
+      
+      For the actual types supported by Core, see
+      \in{section}[sec:prototype:coretypes]. This \quote{lifting} of a
+      type into the value domain is done to allow for type abstractions
+      and applications to be handled as normal lambda abstractions and
+      applications above. This means that a type expression in Core can
+      only ever occur in the argument position of an application, and
+      only if the type of the function that is applied to expects a type
+      as the first argument. This happens in applications of all
+      polymorphic functions. Consider the \lam{fst} function:
 
       \startlambda
-      fst :: \forall a. \forall b. (a, b) -> a
-      fst = λtup.case tup of (,) a b -> a
+      fst :: \forall t1. \forall t2. (t1, t2) ->t1 
+      fst = λt1.λt2.λ(tup :: (t1, t2)). case tup of (,) a b -> a
 
       fstint :: (Int, Int) -> Int
       fstint = λa.λb.fst @Int @Int a b
           
       The type of \lam{fst} has two universally quantified type variables. When
       \lam{fst} is applied in \lam{fstint}, it is first applied to two types.
-      (which are substitued for \lam{a} and \lam{b} in the type of \lam{fst}, so
-      the type of \lam{fst} actual type of arguments and result can be found:
+      (which are substitued for \lam{t1} and \lam{t2} in the type of \lam{fst}, so
+      the actual type of arguments and result of \lam{fst} can be found:
       \lam{fst @Int @Int :: (Int, Int) -> Int}).
     \stopdesc
 
       We will slightly limit our view on Core's type system, since the more
       complicated parts of it are only meant to support Haskell's (or rather,
       \GHC's) type extensions, such as existential types, \small{GADT}s, type
-      families and other non-standard Haskell stuff which we don't (plan to)
+      families and other non-standard Haskell stuff which we do not (plan to)
       support.
 
       In Core, every expression is typed. The translation to Core happens
       after the typechecker, so types in Core are always correct as well
-      (though you could of course construct invalidly typed expressions).
+      (though you could of course construct invalidly typed expressions
+      through the \GHC API).
 
       Any type in core is one of the following:
 
           Maybe Int
         \stoplambda
 
-        This applies some type to another type. This is particularly used to
+        This applies some type to another type. This is particularly used to
         apply type variables (type constructors) to their arguments.
 
         As mentioned above, applications of some type constructors have
         special notation. In particular, these are applications of the
         \emph{function type constructor} and \emph{tuple type constructors}:
         \startlambda
-          foo :: a -> b
-          foo' :: -> a b
-          bar :: (a, b, c)
-          bar' :: (,,) a b c
+          foo :: t1 -> t2 
+          foo' :: -> t1 t2 
+          bar :: (t1, t2, t3)
+          bar' :: (,,) t1 t2 t3
         \stoplambda
       \stopdesc
 
       \startdesc{The forall type}
         \startlambda
-          id :: \forall a. a -> a
+          id :: \forall t. t -> t
         \stoplambda
         The forall type introduces polymorphism. It is the only way to
         introduce new type variables, which are completely unconstrained (Any
         expression. For example, the Core translation of the
         id function is:
         \startlambda
-          id = λa.λx.x
+          id = λt.λ(x :: t).x
         \stoplambda
 
-        Here, the type of the binder \lam{x} is \lam{a}, referring to the
+        Here, the type of the binder \lam{x} is \lam{t}, referring to the
         binder in the topmost lambda.
 
         When using a value with a forall type, the actual type
-        used must be applied first. For example haskell expression \hs{id
+        used must be applied first. For example Haskell expression \hs{id
         True} (the function \hs{id} appleid to the dataconstructor \hs{True})
         translates to the following Core:
 
         \stoplambda
 
         Here, id is first applied to the type to work with. Note that the type
-        then changes from \lam{id :: \forall a. a -> a} to \lam{id @Bool ::
+        then changes from \lam{id :: \forall t. t -> t} to \lam{id @Bool ::
         Bool -> Bool}. Note that the type variable \lam{a} has been
         substituted with the actual type.
 
 
       \startdesc{Predicate type}
         \startlambda
-          show :: \forall a. Show s ⇒ s → String
+          show :: \forall t. Show t ⇒ t → String
         \stoplambda
        
         \todo{Sidenote: type classes?}
 
         A predicate type introduces a constraint on a type variable introduced
         by a forall type (or type lambda). In the example above, the type
-        variable \lam{a} can only contain types that are an \emph{instance} of
+        variable \lam{t} can only contain types that are an \emph{instance} of
         the \emph{type class} \lam{Show}. \refdef{type class}
 
         There are other sorts of predicate types, used for the type families
         \in{example}[ex:AvgState]. This circuit lets the accumulation of the
         inputs be done by a subcomponent, \hs{acc}, but keeps a count of value
         accumulated in its own state.\footnote{Currently, the prototype
-        is not able to compile this example, since the builtin function
+        is not able to compile this example, since the built-in function
         for division has not been added.}
         
         \startbuffer[AvgState]
   \section{Implementing state}  
     Now its clear how to put state annotations in the Haskell source,
     there is the question of how to implement this state translation. As
-    we've seen in \in{section}[sec:prototype:design], the translation to
+    we have seen in \in{section}[sec:prototype:design], the translation to
     \VHDL happens as a simple, final step in the compilation process.
     This step works on a core expression in normal form. The specifics
     of normal form will be explained in
       called function.  So, we can completely ignore substates when
       generating \VHDL for a function.
       
-      From this observation, we might think to remove the substates from a
-      function's states alltogether, and leave only the state components
-      which are actual states of the current function. While doing this
-      would not remove any information needed to generate \small{VHDL} from
-      the function, it would cause the function definition to become invalid
-      (since we won't have any substate to pass to the functions anymore).
-      We could solve the syntactic problems by passing \type{undefined} for
-      state variables, but that would still break the code on the semantic
-      level (\ie, the function would no longer be semantically equivalent to
-      the original input).
+      From this observation it might seem logical to remove the
+      substates from a function's states altogether and leave only the
+      state components which are actual states of the current function.
+      While doing this would not remove any information needed to
+      generate \small{VHDL} from the function, it would cause the
+      function definition to become invalid (since we will not have any
+      substate to pass to the functions anymore).  We could solve the
+      syntactic problems by passing \type{undefined} for state
+      variables, but that would still break the code on the semantic
+      level (\ie, the function would no longer be semantically
+      equivalent to the original input).
 
       To keep the function definition correct until the very end of the
       process, we will not deal with (sub)states until we get to the
       \small{VHDL} generation.  Then, we are translating from Core to
       \small{VHDL}, and we can simply ignore substates, effectively removing
-      the substate components alltogether.
+      the substate components altogether.
 
       But, how will we know what exactly is a substate? Since any state
       argument or return value that represents state must be of the
         \small{VHDL}. In particular, State elements should be removed from
         tuples (and other datatypes) and arguments with a state type should
         not generate ports.
-        \item To make the state actually work, a simple \small{VHDL} proc
-        should be generated. This proc updates the state at every
-        clockcycle, by assigning the new state to the current state. This
-        will be recognized by synthesis tools as a register specification.
+        \item To make the state actually work, a simple \small{VHDL}
+        (sequential) process should be generated. This process updates
+        the state at every clockcycle, by assigning the new state to the
+        current state. This will be recognized by synthesis tools as a
+        register specification.
       \stopitemize
 
       When applying these rules to the description in
       \in{example}[ex:AvgStateNormal], we be left with the description
-      in \in{example}[ex:AvgStateRemoved]. All the parts that don't
+      in \in{example}[ex:AvgStateRemoved]. All the parts that do not
       generate any \VHDL directly are crossed out, leaving just the
       actual flow of values in the final hardware.
       
       \startlambda
-        avg = iλ.--λspacked.--
+        avg = iλ.λ--spacked.--
           let 
             s = --spacked ▶ (AccState, Word)--
             --accs = case s of (accs, _) -> accs--
       When we would really leave out the crossed out parts, we get a slightly
       weird program: There is a variable \lam{s} which has no value, and there
       is a variable \lam{s'} that is never used. Together, these two will form
-      the state proc of the function. \lam{s} contains the "current" state,
+      the state process of the function. \lam{s} contains the "current" state,
       \lam{s'} is assigned the "next" state. So, at the end of each clock
       cycle, \lam{s'} should be assigned to \lam{s}.
 
-      As you can see, the definition of \lam{s'} is still present, since
+      In the example the definition of \lam{s'} is still present, since
       it does not have a state type. The \lam{accums'} substate has been
       removed, leaving us just with the state of \lam{avg} itself.