Add two new simple normal form examples.
[matthijs/master-project/report.git] / Chapters / Normalization.tex
index 6c9b43470dee4a4b714b08bdad4a0b5fcd23182f..4b3a08c821404729476f02aefdba5af96c0c1585 100644 (file)
@@ -1,4 +1,4 @@
-\chapter{Normalization}
+\chapter[chap:normalization]{Normalization}
 
 % A helper to print a single example in the half the page width. The example
 % text should be in a buffer whose name is given in an argument.
 
 % A helper to print a single example in the half the page width. The example
 % text should be in a buffer whose name is given in an argument.
@@ -7,7 +7,7 @@
 % will end up on a single line. The strut=no option prevents a bunch of empty
 % space at the start of the frame.
 \define[1]\example{
 % will end up on a single line. The strut=no option prevents a bunch of empty
 % space at the start of the frame.
 \define[1]\example{
-  \framed[offset=1mm,align=right,strut=no]{
+  \framed[offset=1mm,align=right,strut=no,background=box,frame=off]{
     \setuptyping[option=LAM,style=sans,before=,after=]
     \typebuffer[#1]
     \setuptyping[option=none,style=\tttf]
     \setuptyping[option=LAM,style=sans,before=,after=]
     \typebuffer[#1]
     \setuptyping[option=none,style=\tttf]
@@ -52,13 +52,116 @@ while fully preserving the semantics of the program.
 
 This {\em normal form} is again a Core program, but with a very specific
 structure. A function in normal form has nested lambda's at the top, which
 
 This {\em normal form} is again a Core program, but with a very specific
 structure. A function in normal form has nested lambda's at the top, which
-produce a let expression. This let expression binds every function application
-in the function and produces a simple identifier. Every bound value in
-the let expression is either a simple function application or a case
-expression to extract a single element from a tuple returned by a
-function.
+produce a number of nested let expressions. These let expressions binds a
+number of simple expressions in the function and produces a simple identifier.
+Every bound value in the let expression is either a simple function
+application, a case expression to extract a single element from a tuple
+returned by a function or a case expression to choose between two signals
+based on some other signal.
+
+This structure is easy to translate to VHDL, since each top level lambda will
+be an input port, every bound value will become a concurrent statement (such
+as a component instantiation or conditional signal assignment) and the result
+variable will become the output port.
+
+\startbuffer[MulSum]
+alu :: Bit -> Word -> Word -> Word
+alu = λa.λb.λc.
+    let
+      mul = (*) a b
+      sum = (+) mul c
+    in
+      sum
+\stopbuffer
+
+\startuseMPgraphic{MulSum}
+  save a, b, c, mul, add, sum;
+
+  % I/O ports
+  newCircle.a(btex $a$ etex) "framed(false)";
+  newCircle.b(btex $b$ etex) "framed(false)";
+  newCircle.c(btex $c$ etex) "framed(false)";
+  newCircle.sum(btex $res$ etex) "framed(false)";
+
+  % Components
+  newCircle.mul(btex - etex);
+  newCircle.add(btex + etex);
+
+  a.c      - b.c   = (0cm, 2cm);
+  b.c      - c.c   = (0cm, 2cm);
+  add.c            = c.c + (2cm, 0cm);
+  mul.c            = midpoint(a.c, b.c) + (2cm, 0cm);
+  sum.c            = add.c + (2cm, 0cm);
+  c.c              = origin;
+
+  % Draw objects and lines
+  drawObj(a, b, c, mul, add, sum);
+
+  ncarc(a)(mul) "arcangle(15)";
+  ncarc(b)(mul) "arcangle(-15)";
+  ncline(c)(add);
+  ncline(mul)(add);
+  ncline(add)(sum);
+\stopuseMPgraphic
+
+\placeexample[ex:MulSum]{\small{ALU} described in normal form}
+  \startcombination[2*1]
+    {\typebufferlam{MulSum}}{Description in normal form}
+    {\boxedgraphic{MulSum}}{Described architecture}
+  \stopcombination
 
 
-An example of a program in canonical form would be:
+\startbuffer[AddSubAlu]
+alu :: Bit -> Word -> Word -> Word
+alu = λopcode.λa.λb.
+    let
+      res1 = (+) a b
+      res2 = (-) a b
+      res = case op of
+        Low -> res1
+        High -> res2
+    in
+      res
+\stopbuffer
+
+\startuseMPgraphic{AddSubAlu}
+  save opcode, a, b, add, sub, mux, res;
+
+  % I/O ports
+  newCircle.opcode(btex $opcode$ etex) "framed(false)";
+  newCircle.a(btex $a$ etex) "framed(false)";
+  newCircle.b(btex $b$ etex) "framed(false)";
+  newCircle.res(btex $res$ etex) "framed(false)";
+  % Components
+  newCircle.add(btex + etex);
+  newCircle.sub(btex - etex);
+  newMux.mux;
+
+  opcode.c - a.c   = (0cm, 2cm);
+  add.c    - a.c   = (4cm, 0cm);
+  sub.c    - b.c   = (4cm, 0cm);
+  a.c      - b.c   = (0cm, 3cm);
+  mux.c            = midpoint(add.c, sub.c) + (1.5cm, 0cm);
+  res.c    - mux.c = (1.5cm, 0cm);
+  b.c              = origin;
+
+  % Draw objects and lines
+  drawObj(opcode, a, b, res, add, sub, mux);
+
+  ncline(a)(add) "posA(e)";
+  ncline(b)(sub) "posA(e)";
+  nccurve(a)(sub) "posA(e)", "angleA(0)";
+  nccurve(b)(add) "posA(e)", "angleA(0)";
+  nccurve(add)(mux) "posB(inpa)", "angleB(0)";
+  nccurve(sub)(mux) "posB(inpb)", "angleB(0)";
+  nccurve(opcode)(mux) "posB(n)", "angleA(0)", "angleB(-90)";
+  ncline(mux)(res) "posA(out)";
+\stopuseMPgraphic
+
+\placeexample[ex:AddSubAlu]{\small{ALU} described in normal form}
+  \startcombination[2*1]
+    {\typebufferlam{AddSubAlu}}{Description in normal form}
+    {\boxedgraphic{AddSubAlu}}{Described architecture}
+  \stopcombination
 
 \startlambda
   -- All arguments are an inital lambda
 
 \startlambda
   -- All arguments are an inital lambda
@@ -93,36 +196,114 @@ An example of a program in canonical form would be:
     res
 \stoplambda
 
     res
 \stoplambda
 
+\subsection{Definitions}
+In the following sections, we will be using a number of functions and
+notations, which we will define here.
+
+\subsubsection{Transformations}
+The most important notation is the one for transformation, which looks like
+the following:
+
+\starttrans
+context conditions
+~
+from
+------------------------            expression conditions
+to
+~
+context additions
+\stoptrans
+
+Here, we describe a transformation. The most import parts are \lam{from} and
+\lam{to}, which describe the Core expresssion that should be matched and the
+expression that it should be replaced with. This matching can occur anywhere
+in function that is being normalized, so it applies to any subexpression as
+well.
+
+The \lam{expression conditions} list a number of conditions on the \lam{from}
+expression that must hold for the transformation to apply.
+
+Furthermore, there is some way to look into the environment (\eg, other top
+level bindings).  The \lam{context conditions} part specifies any number of
+top level bindings that must be present for the transformation to apply.
+Usually, this lists a top level binding that binds an identfier that is also
+used in the \lam{from} expression, allowing us to "access" the value of a top
+level binding in the \lam{to} expression (\eg, for inlining).
+
+Finally, there is a way to influence the environment. The \lam{context
+additions} part lists any number of new top level bindings that should be
+added.
+
+If there are no \lam{context conditions} or \lam{context additions}, they can
+be left out alltogether, along with the separator \lam{~}.
+
+TODO: Example
+
+\subsubsection{Other concepts}
+A \emph{global variable} is any variable that is bound at the
+top level of a program, or an external module. A local variable is any other
+variable (\eg, variables local to a function, which can be bound by lambda
+abstractions, let expressions and case expressions).
+
+A \emph{hardware representable} type is a type that we can generate
+a signal for in hardware. For example, a bit, a vector of bits, a 32 bit
+unsigned word, etc. Types that are not runtime representable notably
+include (but are not limited to): Types, dictionaries, functions.
+
+A \emph{builtin function} is a function for which a builtin
+hardware translation is available, because its actual definition is not
+translatable. A user-defined function is any other function.
+
+\subsubsection{Functions}
+Here, we define a number of functions that can be used below to concisely
+specify conditions.
+
+\emph{gvar(expr)} is true when \emph{expr} is a variable that references a
+global variable. It is false when it references a local variable.
+
+\emph{lvar(expr)} is the inverse of \emph{gvar}; it is true when \emph{expr}
+references a local variable, false when it references a global variable.
+
+\emph{representable(expr)} or \emph{representable(var)} is true when
+\emph{expr} or \emph{var} has a type that is representable at runtime.
+
+\subsection{Normal form definition}
+We can describe this normal form in a slightly more formal manner. The
+following EBNF-like description completely captures the intended structure
+(and generates a subset of GHC's core format).
+
+Some clauses have an expression listed in parentheses. These are conditions
+that need to apply to the clause.
+
 \startlambda
 \italic{normal} = \italic{lambda}
 \startlambda
 \italic{normal} = \italic{lambda}
-\italic{lambda} = λvar.\italic{lambda} (representable(typeof(var)))
+\italic{lambda} = λvar.\italic{lambda} (representable(var))
                 | \italic{toplet} 
 \italic{toplet} = let \italic{binding} in \italic{toplet} 
                 | letrec [\italic{binding}] in \italic{toplet}
                 | \italic{toplet} 
 \italic{toplet} = let \italic{binding} in \italic{toplet} 
                 | letrec [\italic{binding}] in \italic{toplet}
-                | var (representable(typeof(var)), fvar(var))
-\italic{binding} = var = \italic{rhs} (representable(typeof(rhs)))
+                | var (representable(varvar))
+\italic{binding} = var = \italic{rhs} (representable(rhs))
                  -- State packing and unpacking by coercion
                  -- State packing and unpacking by coercion
-                 | var0 = var1 :: State ty (fvar(var1))
-                 | var0 = var1 :: ty (var0 :: State ty) (fvar(var1))
+                 | var0 = var1 :: State ty (lvar(var1))
+                 | var0 = var1 :: ty (var0 :: State ty) (lvar(var1))
 \italic{rhs} = userapp
              | builtinapp
              -- Extractor case
 \italic{rhs} = userapp
              | builtinapp
              -- Extractor case
-             | case var of C a0 ... an -> ai (fvar(var))
+             | case var of C a0 ... an -> ai (lvar(var))
              -- Selector case
              -- Selector case
-             | case var of (fvar(var))
-                DEFAULT -> var0 (fvar(var0))
-                C w0 ... wn -> resvar (\forall{}i, wi \neq resvar, fvar(resvar))
+             | case var of (lvar(var))
+                DEFAULT -> var0 (lvar(var0))
+                C w0 ... wn -> resvar (\forall{}i, wi \neq resvar, lvar(resvar))
 \italic{userapp} = \italic{userfunc}
                  | \italic{userapp} {userarg}
 \italic{userapp} = \italic{userfunc}
                  | \italic{userapp} {userarg}
-\italic{userfunc} = var (tvar(var))
-\italic{userarg} = var (fvar(var))
+\italic{userfunc} = var (gvar(var))
+\italic{userarg} = var (lvar(var))
 \italic{builtinapp} = \italic{builtinfunc}
                     | \italic{builtinapp} \italic{builtinarg}
 \italic{builtinfunc} = var (bvar(var))
 \italic{builtinarg} = \italic{coreexpr}
 \stoplambda
 
 \italic{builtinapp} = \italic{builtinfunc}
                     | \italic{builtinapp} \italic{builtinarg}
 \italic{builtinfunc} = var (bvar(var))
 \italic{builtinarg} = \italic{coreexpr}
 \stoplambda
 
--- TODO: Define tvar, fvar, typeof, representable
 -- TODO: Limit builtinarg further
 
 -- TODO: There can still be other casts around (which the code can handle,
 -- TODO: Limit builtinarg further
 
 -- TODO: There can still be other casts around (which the code can handle,
@@ -140,62 +321,16 @@ construction (\eg the \lam{case} statement) or call a builtin function
 (\eg \lam{add} or \lam{sub}). For these, a hardcoded VHDL translation is
 available.
 
 (\eg \lam{add} or \lam{sub}). For these, a hardcoded VHDL translation is
 available.
 
-\subsection{Normal definition}
-Formally, the normal form is a core program obeying the following
-constraints. TODO: Update this section, this is probably not completely
-accurate or relevant anymore.
-
-\startitemize[R,inmargin]
-%\item All top level binds must have the form $\expr{\bind{fun}{lamexpr}}$.
-%$fun$ is an identifier that will be bound as a global identifier.
-%\item A $lamexpr$ has the form $\expr{\lam{arg}{lamexpr}}$ or
-%$\expr{letexpr}$. $arg$ is an identifier which will be bound as an $argument$.
-%\item[letexpr] A $letexpr$ has the form $\expr{\letexpr{letbinds}{retexpr}}$.
-%\item $letbinds$ is a list with elements of the form
-%$\expr{\bind{res}{appexpr}}$ or $\expr{\bind{res}{builtinexpr}}$, where $res$ is
-%an identifier that will be bound as local identifier. The type of the bound
-%value must be a $hardware\;type$.
-%\item[builtinexpr] A $builtinexpr$ is an expression that can be mapped to an
-%equivalent VHDL expression. Since there are many supported forms for this,
-%these are defined in a separate table.
-%\item An $appexpr$ has the form $\expr{fun}$ or $\expr{\app{appexpr}{x}}$,
-%where $fun$ is a global identifier and $x$ is a local identifier.
-%\item[retexpr] A $retexpr$ has the form $\expr{x}$ or $\expr{tupexpr}$, where $x$ is a local identifier that is bound as an $argument$ or $result$.  A $retexpr$ must
-%be of a $hardware\;type$.
-%\item A $tupexpr$ has the form $\expr{con}$ or $\expr{\app{tupexpr}{x}}$,
-%where $con$ is a tuple constructor ({\em e.g.} $(,)$ or $(,,,)$) and $x$ is
-%a local identifier.
-%\item A $hardware\;type$ is a type that can be directly translated to
-%hardware. This includes the types $Bit$, $SizedWord$, tuples containing
-%elements of $hardware\;type$s, and will include others. This explicitely
-%excludes function types.
-\stopitemize
-
-TODO: Say something about uniqueness of identifiers
-
-\subsection{Builtin expressions}
-A $builtinexpr$, as defined at \in[builtinexpr] can have any of the following forms.
-
-\startitemize[m,inmargin]
-%\item
-%$tuple\_extract=\expr{\case{t}{\alt{\app{con}{x_0\;x_1\;..\;x_n}}{x_i}}}$,
-%where $t$ can be any local identifier, $con$ is a tuple constructor ({\em
-%e.g.} $(,)$ or $(,,,)$), $x_0$ to $x_n$ can be any identifier, and $x_i$ can
-%be any of $x_0$ to $x_n$. A case expression must have a $hardware\;type$.
-%\item TODO: Many more!
-\stopitemize
-
 \section{Transform passes}
 \section{Transform passes}
-
 In this section we describe the actual transforms. Here we're using
 the core language in a notation that resembles lambda calculus.
 
 Each of these transforms is meant to be applied to every (sub)expression
 in a program, for as long as it applies. Only when none of the
 In this section we describe the actual transforms. Here we're using
 the core language in a notation that resembles lambda calculus.
 
 Each of these transforms is meant to be applied to every (sub)expression
 in a program, for as long as it applies. Only when none of the
-expressions can be applied anymore, the program is in normal form. We
-hope to be able to prove that this form will obey all of the constraints
-defined above, but this has yet to happen (though it seems likely that
-it will).
+transformations can be applied anymore, the program is in normal form (by
+definition). We hope to be able to prove that this form will obey all of the
+constraints defined above, but this has yet to happen (though it seems likely
+that it will).
 
 Each of the transforms will be described informally first, explaining
 the need for and goal of the transform. Then, a formal definition is
 
 Each of the transforms will be described informally first, explaining
 the need for and goal of the transform. Then, a formal definition is
@@ -221,13 +356,13 @@ E                 \lam{E :: * -> *}
 \stoptrans
 
 \startbuffer[from]
 \stoptrans
 
 \startbuffer[from]
-foo = λa -> case a of 
+foo = λa.case a of 
   True -> λb.mul b b
   False -> id
 \stopbuffer
 
 \startbuffer[to]
   True -> λb.mul b b
   False -> id
 \stopbuffer
 
 \startbuffer[to]
-foo = λa.λx -> (case a of 
+foo = λa.λx.(case a of 
     True -> λb.mul b b
     False -> λy.id y) x
 \stopbuffer
     True -> λb.mul b b
     False -> λy.id y) x
 \stopbuffer
@@ -646,7 +781,7 @@ arguments into normal form. The goal here is to:
 When looking at the arguments of a user-defined function, we can
 divide them into two categories:
 \startitemize
 When looking at the arguments of a user-defined function, we can
 divide them into two categories:
 \startitemize
-  \item Arguments with a runtime representable type (\eg bits or vectors).
+  \item Arguments of a runtime representable type (\eg bits or vectors).
 
         These arguments can be preserved in the program, since they can
         be translated to input ports later on.  However, since we can
 
         These arguments can be preserved in the program, since they can
         be translated to input ports later on.  However, since we can
@@ -682,7 +817,7 @@ When looking at the arguments of a builtin function, we can divide them
 into categories: 
 
 \startitemize
 into categories: 
 
 \startitemize
-  \item Arguments with a runtime representable type.
+  \item Arguments of a runtime representable type.
         
         As we have seen with user-defined functions, these arguments can
         always be reduced to a simple variable reference, by the
         
         As we have seen with user-defined functions, these arguments can
         always be reduced to a simple variable reference, by the
@@ -691,7 +826,7 @@ into categories:
         functions can be limited to signal references, instead of
         needing to support all possible expressions.
 
         functions can be limited to signal references, instead of
         needing to support all possible expressions.
 
-  \item Arguments with a function type.
+  \item Arguments of a function type.
         
         These arguments are functions passed to higher order builtins,
         like \lam{map} and \lam{foldl}. Since implementing these
         
         These arguments are functions passed to higher order builtins,
         like \lam{map} and \lam{foldl}. Since implementing these
@@ -871,20 +1006,6 @@ cannot be brought into normal form by this transform. We rely on an
 inlining transformation to replace such a variable with an expression we
 can propagate again.
 
 inlining transformation to replace such a variable with an expression we
 can propagate again.
 
-TODO: Move these definitions somewhere sensible.
-
-Definition: A global variable is any variable that is bound at the
-top level of a program. A local variable is any other variable.
-
-Definition: A hardware representable type is a type that we can generate
-a signal for in hardware. For example, a bit, a vector of bits, a 32 bit
-unsigned word, etc. Types that are not runtime representable notably
-include (but are not limited to): Types, dictionaries, functions.
-
-Definition: A builtin function is a function for which a builtin
-hardware translation is available, because its actual definition is not
-translatable. A user-defined function is any other function.
-
 \starttrans
 x = E
 ~
 \starttrans
 x = E
 ~
@@ -949,247 +1070,3 @@ x = let x = add 1 2 in x
 \stopbuffer
 
 \transexample{Return value simplification}{from}{to}
 \stopbuffer
 
 \transexample{Return value simplification}{from}{to}
-
-\subsection{Example sequence}
-
-This section lists an example expression, with a sequence of transforms
-applied to it. The exact transforms given here probably don't exactly
-match the transforms given above anymore, but perhaps this can clarify
-the big picture a bit.
-
-TODO: Update or remove this section.
-
-\startlambda
-  λx.
-    let s = foo x
-    in
-      case s of
-        (a, b) ->
-          case a of
-            High -> add
-            Low -> let
-              op' = case b of
-                High -> sub
-                Low  -> λc.λd.c
-              in
-                λc.λd.op' d c
-\stoplambda
-
-After top-level η-abstraction:
-
-\startlambda
-  λx.λc.λd.
-    (let s = foo x
-    in
-      case s of
-        (a, b) ->
-          case a of
-            High -> add
-            Low -> let
-              op' = case b of
-                High -> sub
-                Low  -> λc.λd.c
-              in
-                λc.λd.op' d c
-    ) c d
-\stoplambda
-
-After (extended) β-reduction:
-
-\startlambda
-  λx.λc.λd.
-    let s = foo x
-    in
-      case s of
-        (a, b) ->
-          case a of
-            High -> add c d
-            Low -> let
-              op' = case b of
-                High -> sub
-                Low  -> λc.λd.c
-              in
-                op' d c
-\stoplambda
-
-After return value extraction:
-
-\startlambda
-  λx.λc.λd.
-    let s = foo x
-        r = case s of
-              (a, b) ->
-                case a of
-                  High -> add c d
-                  Low -> let
-                    op' = case b of
-                      High -> sub
-                      Low  -> λc.λd.c
-                    in
-                      op' d c
-    in
-      r
-\stoplambda
-
-Scrutinee simplification does not apply.
-
-After case binder wildening:
-
-\startlambda
-  λx.λc.λd.
-    let s = foo x
-        a = case s of (a, _) -> a
-        b = case s of (_, b) -> b
-        r = case s of (_, _) ->
-              case a of
-                High -> add c d
-                Low -> let op' = case b of
-                             High -> sub
-                             Low  -> λc.λd.c
-                       in
-                         op' d c
-    in
-      r
-\stoplambda
-
-After case value simplification
-
-\startlambda
-  λx.λc.λd.
-    let s = foo x
-        a = case s of (a, _) -> a
-        b = case s of (_, b) -> b
-        r = case s of (_, _) -> r'
-        rh = add c d
-        rl = let rll = λc.λd.c
-                 op' = case b of
-                   High -> sub
-                   Low  -> rll
-             in
-               op' d c
-        r' = case a of
-               High -> rh
-               Low -> rl
-    in
-      r
-\stoplambda
-
-After let flattening:
-
-\startlambda
-  λx.λc.λd.
-    let s = foo x
-        a = case s of (a, _) -> a
-        b = case s of (_, b) -> b
-        r = case s of (_, _) -> r'
-        rh = add c d
-        rl = op' d c
-        rll = λc.λd.c
-        op' = case b of
-          High -> sub
-          Low  -> rll
-        r' = case a of
-               High -> rh
-               Low -> rl
-    in
-      r
-\stoplambda
-
-After function inlining:
-
-\startlambda
-  λx.λc.λd.
-    let s = foo x
-        a = case s of (a, _) -> a
-        b = case s of (_, b) -> b
-        r = case s of (_, _) -> r'
-        rh = add c d
-        rl = (case b of
-          High -> sub
-          Low  -> λc.λd.c) d c
-        r' = case a of
-          High -> rh
-          Low -> rl
-    in
-      r
-\stoplambda
-
-After (extended) β-reduction again:
-
-\startlambda
-  λx.λc.λd.
-    let s = foo x
-        a = case s of (a, _) -> a
-        b = case s of (_, b) -> b
-        r = case s of (_, _) -> r'
-        rh = add c d
-        rl = case b of
-          High -> sub d c
-          Low  -> d
-        r' = case a of
-          High -> rh
-          Low -> rl
-    in
-      r
-\stoplambda
-
-After case value simplification again:
-
-\startlambda
-  λx.λc.λd.
-    let s = foo x
-        a = case s of (a, _) -> a
-        b = case s of (_, b) -> b
-        r = case s of (_, _) -> r'
-        rh = add c d
-        rlh = sub d c
-        rl = case b of
-          High -> rlh
-          Low  -> d
-        r' = case a of
-          High -> rh
-          Low -> rl
-    in
-      r
-\stoplambda
-
-After case removal:
-
-\startlambda
-  λx.λc.λd.
-    let s = foo x
-        a = case s of (a, _) -> a
-        b = case s of (_, b) -> b
-        r = r'
-        rh = add c d
-        rlh = sub d c
-        rl = case b of
-          High -> rlh
-          Low  -> d
-        r' = case a of
-          High -> rh
-          Low -> rl
-    in
-      r
-\stoplambda
-
-After let bind removal:
-
-\startlambda
-  λx.λc.λd.
-    let s = foo x
-        a = case s of (a, _) -> a
-        b = case s of (_, b) -> b
-        rh = add c d
-        rlh = sub d c
-        rl = case b of
-          High -> rlh
-          Low  -> d
-        r' = case a of
-          High -> rh
-          Low -> rl
-    in
-      r'
-\stoplambda
-
-Application simplification is not applicable.