Wrap text to fit in 78 char line width
[matthijs/master-project/dsd-paper.git] / cλash.tex
index 80eeb816b99c87df62847b224988574b712f3f0e..3c16f27731747427b9bb1bb675f5ea49d05894ef 100644 (file)
 % should be used if it is desired that the figures are to be displayed in
 % draft mode.
 %
-\documentclass[conference]{IEEEtran}
+\documentclass[conference,pdf,a4paper,10pt,final,twoside,twocolumn]{IEEEtran}
 % Add the compsoc option for Computer Society conferences.
 %
 % If IEEEtran.cls has not been installed into the LaTeX system files,
 % manually specify the path to it like:
 % \documentclass[conference]{../sty/IEEEtran}
 
-
-
-
-
 % Some very useful LaTeX packages include:
 % (uncomment the ones you want to load)
 
-
 % *** MISC UTILITY PACKAGES ***
 %
 %\usepackage{ifpdf}
 
 % *** CITATION PACKAGES ***
 %
-%\usepackage{cite}
+\usepackage{cite}
 % cite.sty was written by Donald Arseneau
 % V1.6 and later of IEEEtran pre-defines the format of the cite.sty package
 % \cite{} output to follow that of IEEE. Loading the cite package will
 % (Unless specifically asked to do so by the journal or conference you plan
 % to submit to, of course. )
 
-
 % correct bad hyphenation here
 \hyphenation{op-tical net-works semi-conduc-tor}
 
 % Macro for certain acronyms in small caps. Doesn't work with the
 % default font, though (it contains no smallcaps it seems).
-\def\VHDL{\textsc{VHDL}}
-\def\GHC{\textsc{GHC}}
+\def\VHDL{\textsc{vhdl}}
+\def\GHC{\textsc{ghc}}
+\def\CLaSH{\textsc{C$\lambda$aSH}}
 
 % Macro for pretty printing haskell snippets. Just monospaced for now, perhaps
 % we'll get something more complex later on.
 \def\hs#1{\texttt{#1}}
+\def\quote#1{``{#1}"}
 
 \begin{document}
 %
 % paper title
 % can use linebreaks \\ within to get better formatting as desired
-\title{Bare Demo of IEEEtran.cls for Conferences}
+\title{\CLaSH: Structural Descriptions \\ of Synchronous Hardware using Haskell}
 
 
 % author names and affiliations
 % use a multiple column layout for up to three different
 % affiliations
-\author{\IEEEauthorblockN{Michael Shell}
-\IEEEauthorblockA{School of Electrical and\\Computer Engineering\\
-Georgia Institute of Technology\\
-Atlanta, Georgia 30332--0250\\
-Email: http://www.michaelshell.org/contact.html}
-\and
-\IEEEauthorblockN{Homer Simpson}
-\IEEEauthorblockA{Twentieth Century Fox\\
-Springfield, USA\\
-Email: homer@thesimpsons.com}
-\and
-\IEEEauthorblockN{James Kirk\\ and Montgomery Scott}
-\IEEEauthorblockA{Starfleet Academy\\
-San Francisco, California 96678-2391\\
-Telephone: (800) 555--1212\\
-Fax: (888) 555--1212}}
+\author{\IEEEauthorblockN{Christiaan P.R. Baaij, Matthijs Kooijman, Jan Kuper, Marco E.T. Gerards, Bert Molenkamp, Sabih H. Gerez}
+\IEEEauthorblockA{University of Twente, Department of EEMCS\\
+P.O. Box 217, 7500 AE, Enschede, The Netherlands\\
+c.p.r.baaij@utwente.nl, matthijs@stdin.nl}}
+% \and
+% \IEEEauthorblockN{Homer Simpson}
+% \IEEEauthorblockA{Twentieth Century Fox\\
+% Springfield, USA\\
+% Email: homer@thesimpsons.com}
+% \and
+% \IEEEauthorblockN{James Kirk\\ and Montgomery Scott}
+% \IEEEauthorblockA{Starfleet Academy\\
+% San Francisco, California 96678-2391\\
+% Telephone: (800) 555--1212\\
+% Fax: (888) 555--1212}}
 
 % conference papers do not typically use \thanks and this command
 % is locked out in conference mode. If really needed, such as for
@@ -445,36 +440,41 @@ The abstract goes here.
 \IEEEpeerreviewmaketitle
 
 
-
 \section{Introduction}
-
-foo\par bar % Won't compile without at least two paragraphs.
-
+Hardware description languages has allowed the productivity of hardware 
+engineers to keep pace with the development of chip technology. Standard 
+Hardware description languages, like \VHDL\ and Verilog, allowed an engineer 
+to describe circuits using a programming language. These standard languages 
+are very good at describing detailed hardware properties such as timing 
+behavior, but are generally cumbersome in expressing higher-level 
+abstractions. These languages also tend to have a complex syntax and a lack of 
+formal semantics. To overcome these complexities, and raise the abstraction 
+level, a great number of approaches based on functional languages has been 
+proposed \cite{T-Ruby,Hydra,HML2,Hawk1,Lava,ForSyDe1,Wired,reFLect}. The idea 
+of using functional languages started in the early 1980s \cite{Cardelli1981,
+muFP,DAISY,FHDL}, a time which also saw the birth of the currently popular 
+hardware description languages such as \VHDL.
+
+What gives functional languages as hardware description languages their merits 
+is the fact that basic combinatorial circuits are equivalent to mathematical 
+function, and that functional languages lend themselves very well to describe 
+and compose these mathematical functions.
 \section{Hardware description in Haskell}
 
-  To translate Haskell to hardware, every Haskell construct needs a
-  translation to \VHDL. There are often multiple valid translations
-  possible. When faced with choices, the most obvious choice has been
-  chosen wherever possible. In a lot of cases, when a programmer looks
-  at a functional hardware description it is completely clear what
-  hardware is described. We want our translator to generate exactly that
-  hardware whenever possible, to make working with Cλash as intuitive as
-  possible.
-
   \subsection{Function application}
     The basic syntactic elements of a functional program are functions
     and function application. These have a single obvious \VHDL\
     translation: each top level function becomes a hardware component,
     where each argument is an input port and the result value is the
     (single) output port. This output port can have a complex type (such
-    as a tuple), so having just a single output port does not pose a
+    as a tuple), so having just a single output port does not create a
     limitation.
 
     Each function application in turn becomes component instantiation.
     Here, the result of each argument expression is assigned to a
     signal, which is mapped to the corresponding input port. The output
     port of the function is also mapped to a signal, which is used as
-    the result of the application.
+    the result of the application itself.
 
     Since every top level function generates its own component, the
     hierarchy of of function calls is reflected in the final \VHDL\
@@ -482,28 +482,69 @@ foo\par bar % Won't compile without at least two paragraphs.
     hardware.  This separation in different components makes the
     resulting \VHDL\ output easier to read and debug.
 
-  \subsection{Choice}
-    Although describing components and connections allows us to describe
-    a lot of hardware designs already, there is an obvious thing
-    missing: choice. We need some way to be able to choose between
-    values based on another value.  In Haskell, choice is achieved by
-    \hs{case} expressions, \hs{if} expressions, pattern matching and
-    guards.
-
-    However, to be able to describe our hardware in a more convenient
-    way, we also want to translate Haskell's choice mechanisms. The
-    easiest of these are of course case expressions (and \hs{if}
+    Example that defines the \texttt{mac} function by applying the
+    \texttt{add} and \texttt{mul} functions to calculate $a * b + c$:
+
+\begin{verbatim}
+mac a b c = add (mul a b) c
+\end{verbatim}
+
+    TODO: Pretty picture
+
+  \subsection{Choices }
+    Although describing components and connections allows describing a
+    lot of hardware designs already, there is an obvious thing missing:
+    choice. We need some way to be able to choose between values based
+    on another value.  In Haskell, choice is achieved by \hs{case}
+    expressions, \hs{if} expressions, pattern matching and guards.
+
+    The easiest of these are of course case expressions (and \hs{if}
     expressions, which can be very directly translated to \hs{case}
     expressions). A \hs{case} expression can in turn simply be
-    translated to a conditional assignment, where the conditions use
-    equality comparisons against the constructors in the \hs{case}
-    expressions.
+    translated to a conditional assignment in \VHDL, where the
+    conditions use equality comparisons against the constructors in the
+    \hs{case} expressions.
 
     A slightly more complex (but very powerful) form of choice is
     pattern matching. A function can be defined in multiple clauses,
     where each clause specifies a pattern. When the arguments match the
     pattern, the corresponding clause will be used.
 
+    A pattern match (with optional guards) can also be implemented using
+    conditional assignments in \VHDL, where the condition is the logical
+    and of comparison results of each part of the pattern as well as the
+    guard.
+
+    Contrived example that sums two values when they are equal or
+    non-equal (depending on the predicate given) and returns 0
+    otherwise. This shows three implementations, one using and if
+    expression, one using only case expressions and one using pattern
+    matching and guards.
+
+\begin{verbatim}
+sumif pred a b = if pred == Eq && a == b || pred == Neq && a != b
+                 then a + b
+                 else 0
+\end{verbatim}
+
+\begin{verbatim}
+sumif pred a b = case pred of
+  Eq -> case a == b of
+    True -> a + b
+    False -> 0
+  Neq -> case a != b of
+    True -> a + b
+    False -> 0
+\end{verbatim}
+
+\begin{verbatim}
+sumif Eq a b | a == b = a + b
+sumif Neq a b | a != b = a + b
+sumif _ _ _ = 0
+\end{verbatim}
+
+  TODO: Pretty picture
+
   \subsection{Types}
     Translation of two most basic functional concepts has been
     discussed: function application and choice. Before looking further
@@ -527,7 +568,7 @@ foo\par bar % Won't compile without at least two paragraphs.
   \subsection{Built-in types}
     The language currently supports the following built-in types. Of these,
     only the \hs{Bool} type is supported by Haskell out of the box (the
-    others are defined by the Cλash package, so they are user-defined types
+    others are defined by the \CLaSH\ package, so they are user-defined types
     from Haskell's point of view).
 
     \begin{description}
@@ -706,13 +747,60 @@ foo\par bar % Won't compile without at least two paragraphs.
       \end{description}
 
 
-\section{Cλash prototype}
+\section{\CLaSH\ prototype}
 
 foo\par bar
 
 \section{Related work}
-
-foo\par bar
+Many functional hardware description languages have been developed over the 
+years. Early work includes such languages as \textsc{$\mu$fp}~\cite{muFP}, an 
+extension of Backus' \textsc{fp} language to synchronous streams, designed 
+particularly for describing and reasoning about regular circuits. The 
+Ruby~\cite{Ruby} language uses relations, instead of functions, to describe 
+circuits, and has a particular focus on layout. \textsc{hml}~\cite{HML2} is a 
+hardware modeling language based on the strict functional language 
+\textsc{ml}, and has support for polymorphic types and higher-order functions. 
+Published work suggests that there is no direct simulation support for 
+\textsc{hml}, and that the translation to \VHDL\ is only partial.
+
+Like this work, many functional hardware description languages have some sort 
+of foundation in the functional programming language Haskell. 
+Hawk~\cite{Hawk1} uses Haskell to describe system-level executable 
+specifications used to model the behavior of superscalar microprocessors. Hawk 
+specifications can be simulated, but there seems to be no support for 
+automated circuit synthesis. The ForSyDe~\cite{ForSyDe2} system uses Haskell 
+to specify abstract system models, which can (manually) be transformed into an 
+implementation model using semantic preserving transformations. ForSyDe has 
+several simulation and synthesis backends, though synthesis is restricted to 
+the synchronous subset of the ForSyDe language.
+
+Lava~\cite{Lava} is a hardware description language that focuses on the 
+structural representation of hardware. Besides support for simulation and 
+circuit synthesis, Lava descriptions can be interfaced with formal method 
+tools for formal verification. Lava descriptions are actually circuit 
+generators when viewed from a synthesis viewpoint, in that the language 
+elements of Haskell, such as choice, can be used to guide the circuit 
+generation. If a developer wants to insert a choice element inside an actual 
+circuit he will have to specify this explicitly as a component. In this 
+respect \CLaSH\ differs from Lava, in that all the choice elements, such as 
+case-statements and patter matching, are synthesized to choice elements in the 
+eventual circuit. As such, richer control structures can both be specified and 
+synthesized in \CLaSH\ compared to any of the languages mentioned in this 
+section.
+
+The merits of polymorphic typing, combined with higher-order functions, are 
+now also recognized in the `main-stream' hardware description languages, 
+exemplified by the new \VHDL\ 2008 standard~\cite{VHDL2008}. \VHDL-2008 has 
+support to specify types as generics, thus allowing a developer to describe 
+polymorphic components. Note that those types still require an explicit 
+generic map, whereas type-inference and type-specialization are implicit in 
+\CLaSH.
+
+Wired~\cite{Wired},, T-Ruby~\cite{T-Ruby}, Hydra~\cite{Hydra}. 
+
+A functional language designed specifically for hardware design is 
+$re{\mathit{FL}}^{ect}$~\cite{reFLect}, which draws experience from earlier 
+language called \textsc{fl}~\cite{FL} to la
 
 % An example of a floating figure using the graphicx package.
 % Note that \label must occur AFTER (or within) \caption.
@@ -832,20 +920,20 @@ The authors would like to thank...
 % http://www.ctan.org/tex-archive/biblio/bibtex/contrib/doc/
 % The IEEEtran BibTeX style support page is at:
 % http://www.michaelshell.org/tex/ieeetran/bibtex/
-%\bibliographystyle{IEEEtran}
+\bibliographystyle{IEEEtran}
 % argument is your BibTeX string definitions and bibliography database(s)
-%\bibliography{IEEEabrv,../bib/paper}
+\bibliography{IEEEabrv,cλash.bib}
 %
 % <OR> manually copy in the resultant .bbl file
 % set second argument of \begin to the number of references
 % (used to reserve space for the reference number labels box)
-\begin{thebibliography}{1}
-
-\bibitem{IEEEhowto:kopka}
-H.~Kopka and P.~W. Daly, \emph{A Guide to \LaTeX}, 3rd~ed.\hskip 1em plus
-  0.5em minus 0.4em\relax Harlow, England: Addison-Wesley, 1999.
-
-\end{thebibliography}
+\begin{thebibliography}{1}
+% 
+\bibitem{IEEEhowto:kopka}
+H.~Kopka and P.~W. Daly, \emph{A Guide to \LaTeX}, 3rd~ed.\hskip 1em plus
+  0.5em minus 0.4em\relax Harlow, England: Addison-Wesley, 1999.
+% 
+\end{thebibliography}