Clean up source files:
[matthijs/master-project/cλash.git] / cλash / CLasH / Normalize.hs
1 {-# LANGUAGE PackageImports #-}
2 --
3 -- Functions to bring a Core expression in normal form. This module provides a
4 -- top level function "normalize", and defines the actual transformation passes that
5 -- are performed.
6 --
7 module CLasH.Normalize (getNormalized, normalizeExpr, splitNormalized) where
8
9 -- Standard modules
10 import Debug.Trace
11 import qualified Maybe
12 import qualified List
13 import qualified "transformers" Control.Monad.Trans as Trans
14 import qualified Control.Monad as Monad
15 import qualified Control.Monad.Trans.Writer as Writer
16 import qualified Data.Monoid as Monoid
17
18 -- GHC API
19 import CoreSyn
20 import qualified CoreUtils
21 import qualified Type
22 import qualified Id
23 import qualified Var
24 import qualified VarSet
25 import qualified CoreFVs
26 import qualified MkCore
27 import Outputable ( showSDoc, ppr, nest )
28
29 -- Local imports
30 import CLasH.Normalize.NormalizeTypes
31 import CLasH.Translator.TranslatorTypes
32 import CLasH.Normalize.NormalizeTools
33 import qualified CLasH.Utils as Utils
34 import CLasH.Utils.Core.CoreTools
35 import CLasH.Utils.Core.BinderTools
36 import CLasH.Utils.Pretty
37
38 --------------------------------
39 -- Start of transformations
40 --------------------------------
41
42 --------------------------------
43 -- η abstraction
44 --------------------------------
45 eta, etatop :: Transform
46 eta expr | is_fun expr && not (is_lam expr) = do
47   let arg_ty = (fst . Type.splitFunTy . CoreUtils.exprType) expr
48   id <- Trans.lift $ mkInternalVar "param" arg_ty
49   change (Lam id (App expr (Var id)))
50 -- Leave all other expressions unchanged
51 eta e = return e
52 etatop = notappargs ("eta", eta)
53
54 --------------------------------
55 -- β-reduction
56 --------------------------------
57 beta, betatop :: Transform
58 -- Substitute arg for x in expr. For value lambda's, also clone before
59 -- substitution.
60 beta (App (Lam x expr) arg) | CoreSyn.isTyVar x = setChanged >> substitute x arg expr
61                             | otherwise      = setChanged >> substitute_clone x arg expr
62 -- Propagate the application into the let
63 beta (App (Let binds expr) arg) = change $ Let binds (App expr arg)
64 -- Propagate the application into each of the alternatives
65 beta (App (Case scrut b ty alts) arg) = change $ Case scrut b ty' alts'
66   where 
67     alts' = map (\(con, bndrs, expr) -> (con, bndrs, (App expr arg))) alts
68     ty' = CoreUtils.applyTypeToArg ty arg
69 -- Leave all other expressions unchanged
70 beta expr = return expr
71 -- Perform this transform everywhere
72 betatop = everywhere ("beta", beta)
73
74 --------------------------------
75 -- Cast propagation
76 --------------------------------
77 -- Try to move casts as much downward as possible.
78 castprop, castproptop :: Transform
79 castprop (Cast (Let binds expr) ty) = change $ Let binds (Cast expr ty)
80 castprop expr@(Cast (Case scrut b _ alts) ty) = change (Case scrut b ty alts')
81   where
82     alts' = map (\(con, bndrs, expr) -> (con, bndrs, (Cast expr ty))) alts
83 -- Leave all other expressions unchanged
84 castprop expr = return expr
85 -- Perform this transform everywhere
86 castproptop = everywhere ("castprop", castprop)
87
88 --------------------------------
89 -- Cast simplification. Mostly useful for state packing and unpacking, but
90 -- perhaps for others as well.
91 --------------------------------
92 castsimpl, castsimpltop :: Transform
93 castsimpl expr@(Cast val ty) = do
94   -- Don't extract values that are already simpl
95   local_var <- Trans.lift $ is_local_var val
96   -- Don't extract values that are not representable, to prevent loops with
97   -- inlinenonrep
98   repr <- isRepr val
99   if (not local_var) && repr
100     then do
101       -- Generate a binder for the expression
102       id <- Trans.lift $ mkBinderFor val "castval"
103       -- Extract the expression
104       change $ Let (NonRec id val) (Cast (Var id) ty)
105     else
106       return expr
107 -- Leave all other expressions unchanged
108 castsimpl expr = return expr
109 -- Perform this transform everywhere
110 castsimpltop = everywhere ("castsimpl", castsimpl)
111
112
113 --------------------------------
114 -- Lambda simplication
115 --------------------------------
116 -- Ensure that a lambda always evaluates to a let expressions or a simple
117 -- variable reference.
118 lambdasimpl, lambdasimpltop :: Transform
119 -- Don't simplify a lambda that evaluates to let, since this is already
120 -- normal form (and would cause infinite loops).
121 lambdasimpl expr@(Lam _ (Let _ _)) = return expr
122 -- Put the of a lambda in its own binding, but not when the expression is
123 -- already a local variable, or not representable (to prevent loops with
124 -- inlinenonrep).
125 lambdasimpl expr@(Lam bndr res) = do
126   repr <- isRepr res
127   local_var <- Trans.lift $ is_local_var res
128   if not local_var && repr
129     then do
130       id <- Trans.lift $ mkBinderFor res "res"
131       change $ Lam bndr (Let (NonRec id res) (Var id))
132     else
133       -- If the result is already a local var or not representable, don't
134       -- extract it.
135       return expr
136
137 -- Leave all other expressions unchanged
138 lambdasimpl expr = return expr
139 -- Perform this transform everywhere
140 lambdasimpltop = everywhere ("lambdasimpl", lambdasimpl)
141
142 --------------------------------
143 -- let derecursification
144 --------------------------------
145 letderec, letderectop :: Transform
146 letderec expr@(Let (Rec binds) res) = case liftable of
147   -- Nothing is liftable, just return
148   [] -> return expr
149   -- Something can be lifted, generate a new let expression
150   _ -> change $ mkNonRecLets liftable (Let (Rec nonliftable) res)
151   where
152     -- Make a list of all the binders bound in this recursive let
153     bndrs = map fst binds
154     -- See which bindings are liftable
155     (liftable, nonliftable) = List.partition canlift binds
156     -- Any expression that does not use any of the binders in this recursive let
157     -- can be lifted into a nonrec let. It can't use its own binder either,
158     -- since that would mean the binding is self-recursive and should be in a
159     -- single bind recursive let.
160     canlift (bndr, e) = not $ expr_uses_binders bndrs e
161 -- Leave all other expressions unchanged
162 letderec expr = return expr
163 -- Perform this transform everywhere
164 letderectop = everywhere ("letderec", letderec)
165
166 --------------------------------
167 -- let simplification
168 --------------------------------
169 letsimpl, letsimpltop :: Transform
170 -- Don't simplify a let that evaluates to another let, since this is already
171 -- normal form (and would cause infinite loops with letflat below).
172 letsimpl expr@(Let _ (Let _ _)) = return expr
173 -- Put the "in ..." value of a let in its own binding, but not when the
174 -- expression is already a local variable, or not representable (to prevent loops with inlinenonrep).
175 letsimpl expr@(Let binds res) = do
176   repr <- isRepr res
177   local_var <- Trans.lift $ is_local_var res
178   if not local_var && repr
179     then do
180       -- If the result is not a local var already (to prevent loops with
181       -- ourselves), extract it.
182       id <- Trans.lift $ mkBinderFor res "foo"
183       change $ Let binds (Let (NonRec id  res) (Var id))
184     else
185       -- If the result is already a local var, don't extract it.
186       return expr
187
188 -- Leave all other expressions unchanged
189 letsimpl expr = return expr
190 -- Perform this transform everywhere
191 letsimpltop = everywhere ("letsimpl", letsimpl)
192
193 --------------------------------
194 -- let flattening
195 --------------------------------
196 -- Takes a let that binds another let, and turns that into two nested lets.
197 -- e.g., from:
198 -- let b = (let b' = expr' in res') in res
199 -- to:
200 -- let b' = expr' in (let b = res' in res)
201 letflat, letflattop :: Transform
202 -- Turn a nonrec let that binds a let into two nested lets.
203 letflat (Let (NonRec b (Let binds  res')) res) = 
204   change $ Let binds (Let (NonRec b res') res)
205 letflat (Let (Rec binds) expr) = do
206   -- Flatten each binding.
207   binds' <- Utils.concatM $ Monad.mapM flatbind binds
208   -- Return the new let. We don't use change here, since possibly nothing has
209   -- changed. If anything has changed, flatbind has already flagged that
210   -- change.
211   return $ Let (Rec binds') expr
212   where
213     -- Turns a binding of a let into a multiple bindings, or any other binding
214     -- into a list with just that binding
215     flatbind :: (CoreBndr, CoreExpr) -> TransformMonad [(CoreBndr, CoreExpr)]
216     flatbind (b, Let (Rec binds) expr) = change ((b, expr):binds)
217     flatbind (b, Let (NonRec b' expr') expr) = change [(b, expr), (b', expr')]
218     flatbind (b, expr) = return [(b, expr)]
219 -- Leave all other expressions unchanged
220 letflat expr = return expr
221 -- Perform this transform everywhere
222 letflattop = everywhere ("letflat", letflat)
223
224 --------------------------------
225 -- empty let removal
226 --------------------------------
227 -- Remove empty (recursive) lets
228 letremove, letremovetop :: Transform
229 letremove (Let (Rec []) res) = change res
230 -- Leave all other expressions unchanged
231 letremove expr = return expr
232 -- Perform this transform everywhere
233 letremovetop = everywhere ("letremove", letremove)
234
235 --------------------------------
236 -- Simple let binding removal
237 --------------------------------
238 -- Remove a = b bindings from let expressions everywhere
239 letremovesimpletop :: Transform
240 letremovesimpletop = everywhere ("letremovesimple", inlinebind (\(b, e) -> Trans.lift $ is_local_var e))
241
242 --------------------------------
243 -- Unused let binding removal
244 --------------------------------
245 letremoveunused, letremoveunusedtop :: Transform
246 letremoveunused expr@(Let (NonRec b bound) res) = do
247   let used = expr_uses_binders [b] res
248   if used
249     then return expr
250     else change res
251 letremoveunused expr@(Let (Rec binds) res) = do
252   -- Filter out all unused binds.
253   let binds' = filter dobind binds
254   -- Only set the changed flag if binds got removed
255   changeif (length binds' /= length binds) (Let (Rec binds') res)
256     where
257       bound_exprs = map snd binds
258       -- For each bind check if the bind is used by res or any of the bound
259       -- expressions
260       dobind (bndr, _) = any (expr_uses_binders [bndr]) (res:bound_exprs)
261 -- Leave all other expressions unchanged
262 letremoveunused expr = return expr
263 letremoveunusedtop = everywhere ("letremoveunused", letremoveunused)
264
265 {-
266 --------------------------------
267 -- Identical let binding merging
268 --------------------------------
269 -- Merge two bindings in a let if they are identical 
270 -- TODO: We would very much like to use GHC's CSE module for this, but that
271 -- doesn't track if something changed or not, so we can't use it properly.
272 letmerge, letmergetop :: Transform
273 letmerge expr@(Let _ _) = do
274   let (binds, res) = flattenLets expr
275   binds' <- domerge binds
276   return $ mkNonRecLets binds' res
277   where
278     domerge :: [(CoreBndr, CoreExpr)] -> TransformMonad [(CoreBndr, CoreExpr)]
279     domerge [] = return []
280     domerge (e:es) = do 
281       es' <- mapM (mergebinds e) es
282       es'' <- domerge es'
283       return (e:es'')
284
285     -- Uses the second bind to simplify the second bind, if applicable.
286     mergebinds :: (CoreBndr, CoreExpr) -> (CoreBndr, CoreExpr) -> TransformMonad (CoreBndr, CoreExpr)
287     mergebinds (b1, e1) (b2, e2)
288       -- Identical expressions? Replace the second binding with a reference to
289       -- the first binder.
290       | CoreUtils.cheapEqExpr e1 e2 = change $ (b2, Var b1)
291       -- Different expressions? Don't change
292       | otherwise = return (b2, e2)
293 -- Leave all other expressions unchanged
294 letmerge expr = return expr
295 letmergetop = everywhere ("letmerge", letmerge)
296 -}
297
298 --------------------------------
299 -- Non-representable binding inlining
300 --------------------------------
301 -- Remove a = B bindings, with B of a non-representable type, from let
302 -- expressions everywhere. This means that any value that we can't generate a
303 -- signal for, will be inlined and hopefully turned into something we can
304 -- represent.
305 --
306 -- This is a tricky function, which is prone to create loops in the
307 -- transformations. To fix this, we make sure that no transformation will
308 -- create a new let binding with a non-representable type. These other
309 -- transformations will just not work on those function-typed values at first,
310 -- but the other transformations (in particular β-reduction) should make sure
311 -- that the type of those values eventually becomes representable.
312 inlinenonreptop :: Transform
313 inlinenonreptop = everywhere ("inlinenonrep", inlinebind ((Monad.liftM not) . isRepr . snd))
314
315 --------------------------------
316 -- Top level function inlining
317 --------------------------------
318 -- This transformation inlines top level bindings that have been generated by
319 -- the compiler and are really simple. Really simple currently means that the
320 -- normalized form only contains a single binding, which catches most of the
321 -- cases where a top level function is created that simply calls a type class
322 -- method with a type and dictionary argument, e.g.
323 --   fromInteger = GHC.Num.fromInteger (SizedWord D8) $dNum
324 -- which is later called using simply
325 --   fromInteger (smallInteger 10)
326 -- By inlining such calls to simple, compiler generated functions, we prevent
327 -- huge amounts of trivial components in the VHDL output, which the user never
328 -- wanted. We never inline user-defined functions, since we want to preserve
329 -- all structure defined by the user. Currently this includes all functions
330 -- that were created by funextract, since we would get loops otherwise.
331 --
332 -- Note that "defined by the compiler" isn't completely watertight, since GHC
333 -- doesn't seem to set all those names as "system names", we apply some
334 -- guessing here.
335 inlinetoplevel, inlinetopleveltop :: Transform
336 -- Any system name is candidate for inlining. Never inline user-defined
337 -- functions, to preserve structure.
338 inlinetoplevel expr@(Var f) | not $ isUserDefined f = do
339   norm <- isNormalizeable f
340   -- See if this is a top level binding for which we have a body
341   body_maybe <- Trans.lift $ getGlobalBind f
342   if norm && Maybe.isJust body_maybe
343     then do
344       -- Get the normalized version
345       norm <- Trans.lift $ getNormalized f
346       if needsInline norm 
347         then do
348           -- Regenerate all uniques in the to-be-inlined expression
349           norm_uniqued <- Trans.lift $ genUniques norm
350           change norm_uniqued
351         else
352           return expr
353     else
354       -- No body or not normalizeable.
355       return expr
356 -- Leave all other expressions unchanged
357 inlinetoplevel expr = return expr
358 inlinetopleveltop = everywhere ("inlinetoplevel", inlinetoplevel)
359
360 needsInline :: CoreExpr -> Bool
361 needsInline expr = case splitNormalized expr of
362   -- Inline any function that only has a single definition, it is probably
363   -- simple enough. This might inline some stuff that it shouldn't though it
364   -- will never inline user-defined functions (inlinetoplevel only tries
365   -- system names) and inlining should never break things.
366   (args, [bind], res) -> True
367   _ -> False
368
369 --------------------------------
370 -- Scrutinee simplification
371 --------------------------------
372 scrutsimpl,scrutsimpltop :: Transform
373 -- Don't touch scrutinees that are already simple
374 scrutsimpl expr@(Case (Var _) _ _ _) = return expr
375 -- Replace all other cases with a let that binds the scrutinee and a new
376 -- simple scrutinee, but only when the scrutinee is representable (to prevent
377 -- loops with inlinenonrep, though I don't think a non-representable scrutinee
378 -- will be supported anyway...) 
379 scrutsimpl expr@(Case scrut b ty alts) = do
380   repr <- isRepr scrut
381   if repr
382     then do
383       id <- Trans.lift $ mkBinderFor scrut "scrut"
384       change $ Let (NonRec id scrut) (Case (Var id) b ty alts)
385     else
386       return expr
387 -- Leave all other expressions unchanged
388 scrutsimpl expr = return expr
389 -- Perform this transform everywhere
390 scrutsimpltop = everywhere ("scrutsimpl", scrutsimpl)
391
392 --------------------------------
393 -- Case binder wildening
394 --------------------------------
395 casesimpl, casesimpltop :: Transform
396 -- This is already a selector case (or, if x does not appear in bndrs, a very
397 -- simple case statement that will be removed by caseremove below). Just leave
398 -- it be.
399 casesimpl expr@(Case scrut b ty [(con, bndrs, Var x)]) = return expr
400 -- Make sure that all case alternatives have only wild binders and simple
401 -- expressions.
402 -- This is done by creating a new let binding for each non-wild binder, which
403 -- is bound to a new simple selector case statement and for each complex
404 -- expression. We do this only for representable types, to prevent loops with
405 -- inlinenonrep.
406 casesimpl expr@(Case scrut b ty alts) = do
407   (bindingss, alts') <- (Monad.liftM unzip) $ mapM doalt alts
408   let bindings = concat bindingss
409   -- Replace the case with a let with bindings and a case
410   let newlet = mkNonRecLets bindings (Case scrut b ty alts')
411   -- If there are no non-wild binders, or this case is already a simple
412   -- selector (i.e., a single alt with exactly one binding), already a simple
413   -- selector altan no bindings (i.e., no wild binders in the original case),
414   -- don't change anything, otherwise, replace the case.
415   if null bindings then return expr else change newlet 
416   where
417   -- Generate a single wild binder, since they are all the same
418   wild = MkCore.mkWildBinder
419   -- Wilden the binders of one alt, producing a list of bindings as a
420   -- sideeffect.
421   doalt :: CoreAlt -> TransformMonad ([(CoreBndr, CoreExpr)], CoreAlt)
422   doalt (con, bndrs, expr) = do
423     -- Make each binder wild, if possible
424     bndrs_res <- Monad.zipWithM dobndr bndrs [0..]
425     let (newbndrs, bindings_maybe) = unzip bndrs_res
426     -- Extract a complex expression, if possible. For this we check if any of
427     -- the new list of bndrs are used by expr. We can't use free_vars here,
428     -- since that looks at the old bndrs.
429     let uses_bndrs = not $ VarSet.isEmptyVarSet $ CoreFVs.exprSomeFreeVars (`elem` newbndrs) expr
430     (exprbinding_maybe, expr') <- doexpr expr uses_bndrs
431     -- Create a new alternative
432     let newalt = (con, newbndrs, expr')
433     let bindings = Maybe.catMaybes (bindings_maybe ++ [exprbinding_maybe])
434     return (bindings, newalt)
435     where
436       -- Make wild alternatives for each binder
437       wildbndrs = map (\bndr -> MkCore.mkWildBinder (Id.idType bndr)) bndrs
438       -- A set of all the binders that are used by the expression
439       free_vars = CoreFVs.exprSomeFreeVars (`elem` bndrs) expr
440       -- Look at the ith binder in the case alternative. Return a new binder
441       -- for it (either the same one, or a wild one) and optionally a let
442       -- binding containing a case expression.
443       dobndr :: CoreBndr -> Int -> TransformMonad (CoreBndr, Maybe (CoreBndr, CoreExpr))
444       dobndr b i = do
445         repr <- isRepr b
446         -- Is b wild (e.g., not a free var of expr. Since b is only in scope
447         -- in expr, this means that b is unused if expr does not use it.)
448         let wild = not (VarSet.elemVarSet b free_vars)
449         -- Create a new binding for any representable binder that is not
450         -- already wild and is representable (to prevent loops with
451         -- inlinenonrep).
452         if (not wild) && repr
453           then do
454             -- Create on new binder that will actually capture a value in this
455             -- case statement, and return it.
456             let bty = (Id.idType b)
457             id <- Trans.lift $ mkInternalVar "sel" bty
458             let binders = take i wildbndrs ++ [id] ++ drop (i+1) wildbndrs
459             let caseexpr = Case scrut b bty [(con, binders, Var id)]
460             return (wildbndrs!!i, Just (b, caseexpr))
461           else 
462             -- Just leave the original binder in place, and don't generate an
463             -- extra selector case.
464             return (b, Nothing)
465       -- Process the expression of a case alternative. Accepts an expression
466       -- and whether this expression uses any of the binders in the
467       -- alternative. Returns an optional new binding and a new expression.
468       doexpr :: CoreExpr -> Bool -> TransformMonad (Maybe (CoreBndr, CoreExpr), CoreExpr)
469       doexpr expr uses_bndrs = do
470         local_var <- Trans.lift $ is_local_var expr
471         repr <- isRepr expr
472         -- Extract any expressions that do not use any binders from this
473         -- alternative, is not a local var already and is representable (to
474         -- prevent loops with inlinenonrep).
475         if (not uses_bndrs) && (not local_var) && repr
476           then do
477             id <- Trans.lift $ mkBinderFor expr "caseval"
478             -- We don't flag a change here, since casevalsimpl will do that above
479             -- based on Just we return here.
480             return (Just (id, expr), Var id)
481           else
482             -- Don't simplify anything else
483             return (Nothing, expr)
484 -- Leave all other expressions unchanged
485 casesimpl expr = return expr
486 -- Perform this transform everywhere
487 casesimpltop = everywhere ("casesimpl", casesimpl)
488
489 --------------------------------
490 -- Case removal
491 --------------------------------
492 -- Remove case statements that have only a single alternative and only wild
493 -- binders.
494 caseremove, caseremovetop :: Transform
495 -- Replace a useless case by the value of its single alternative
496 caseremove (Case scrut b ty [(con, bndrs, expr)]) | not usesvars = change expr
497     -- Find if any of the binders are used by expr
498     where usesvars = (not . VarSet.isEmptyVarSet . (CoreFVs.exprSomeFreeVars (`elem` bndrs))) expr
499 -- Leave all other expressions unchanged
500 caseremove expr = return expr
501 -- Perform this transform everywhere
502 caseremovetop = everywhere ("caseremove", caseremove)
503
504 --------------------------------
505 -- Argument extraction
506 --------------------------------
507 -- Make sure that all arguments of a representable type are simple variables.
508 appsimpl, appsimpltop :: Transform
509 -- Simplify all representable arguments. Do this by introducing a new Let
510 -- that binds the argument and passing the new binder in the application.
511 appsimpl expr@(App f arg) = do
512   -- Check runtime representability
513   repr <- isRepr arg
514   local_var <- Trans.lift $ is_local_var arg
515   if repr && not local_var
516     then do -- Extract representable arguments
517       id <- Trans.lift $ mkBinderFor arg "arg"
518       change $ Let (NonRec id arg) (App f (Var id))
519     else -- Leave non-representable arguments unchanged
520       return expr
521 -- Leave all other expressions unchanged
522 appsimpl expr = return expr
523 -- Perform this transform everywhere
524 appsimpltop = everywhere ("appsimpl", appsimpl)
525
526 --------------------------------
527 -- Function-typed argument propagation
528 --------------------------------
529 -- Remove all applications to function-typed arguments, by duplication the
530 -- function called with the function-typed parameter replaced by the free
531 -- variables of the argument passed in.
532 argprop, argproptop :: Transform
533 -- Transform any application of a named function (i.e., skip applications of
534 -- lambda's). Also skip applications that have arguments with free type
535 -- variables, since we can't inline those.
536 argprop expr@(App _ _) | is_var fexpr = do
537   -- Find the body of the function called
538   body_maybe <- Trans.lift $ getGlobalBind f
539   case body_maybe of
540     Just body -> do
541       -- Process each of the arguments in turn
542       (args', changed) <- Writer.listen $ mapM doarg args
543       -- See if any of the arguments changed
544       case Monoid.getAny changed of
545         True -> do
546           let (newargs', newparams', oldargs) = unzip3 args'
547           let newargs = concat newargs'
548           let newparams = concat newparams'
549           -- Create a new body that consists of a lambda for all new arguments and
550           -- the old body applied to some arguments.
551           let newbody = MkCore.mkCoreLams newparams (MkCore.mkCoreApps body oldargs)
552           -- Create a new function with the same name but a new body
553           newf <- Trans.lift $ mkFunction f newbody
554           -- Replace the original application with one of the new function to the
555           -- new arguments.
556           change $ MkCore.mkCoreApps (Var newf) newargs
557         False ->
558           -- Don't change the expression if none of the arguments changed
559           return expr
560       
561     -- If we don't have a body for the function called, leave it unchanged (it
562     -- should be a primitive function then).
563     Nothing -> return expr
564   where
565     -- Find the function called and the arguments
566     (fexpr, args) = collectArgs expr
567     Var f = fexpr
568
569     -- Process a single argument and return (args, bndrs, arg), where args are
570     -- the arguments to replace the given argument in the original
571     -- application, bndrs are the binders to include in the top-level lambda
572     -- in the new function body, and arg is the argument to apply to the old
573     -- function body.
574     doarg :: CoreExpr -> TransformMonad ([CoreExpr], [CoreBndr], CoreExpr)
575     doarg arg = do
576       repr <- isRepr arg
577       bndrs <- Trans.lift getGlobalBinders
578       let interesting var = Var.isLocalVar var && (var `notElem` bndrs)
579       if not repr && not (is_var arg && interesting (exprToVar arg)) && not (has_free_tyvars arg) 
580         then do
581           -- Propagate all complex arguments that are not representable, but not
582           -- arguments with free type variables (since those would require types
583           -- not known yet, which will always be known eventually).
584           -- Find interesting free variables, each of which should be passed to
585           -- the new function instead of the original function argument.
586           -- 
587           -- Interesting vars are those that are local, but not available from the
588           -- top level scope (functions from this module are defined as local, but
589           -- they're not local to this function, so we can freely move references
590           -- to them into another function).
591           let free_vars = VarSet.varSetElems $ CoreFVs.exprSomeFreeVars interesting arg
592           -- Mark the current expression as changed
593           setChanged
594           return (map Var free_vars, free_vars, arg)
595         else do
596           -- Representable types will not be propagated, and arguments with free
597           -- type variables will be propagated later.
598           -- TODO: preserve original naming?
599           id <- Trans.lift $ mkBinderFor arg "param"
600           -- Just pass the original argument to the new function, which binds it
601           -- to a new id and just pass that new id to the old function body.
602           return ([arg], [id], mkReferenceTo id) 
603 -- Leave all other expressions unchanged
604 argprop expr = return expr
605 -- Perform this transform everywhere
606 argproptop = everywhere ("argprop", argprop)
607
608 --------------------------------
609 -- Function-typed argument extraction
610 --------------------------------
611 -- This transform takes any function-typed argument that cannot be propagated
612 -- (because the function that is applied to it is a builtin function), and
613 -- puts it in a brand new top level binder. This allows us to for example
614 -- apply map to a lambda expression This will not conflict with inlinenonrep,
615 -- since that only inlines local let bindings, not top level bindings.
616 funextract, funextracttop :: Transform
617 funextract expr@(App _ _) | is_var fexpr = do
618   body_maybe <- Trans.lift $ getGlobalBind f
619   case body_maybe of
620     -- We don't have a function body for f, so we can perform this transform.
621     Nothing -> do
622       -- Find the new arguments
623       args' <- mapM doarg args
624       -- And update the arguments. We use return instead of changed, so the
625       -- changed flag doesn't get set if none of the args got changed.
626       return $ MkCore.mkCoreApps fexpr args'
627     -- We have a function body for f, leave this application to funprop
628     Just _ -> return expr
629   where
630     -- Find the function called and the arguments
631     (fexpr, args) = collectArgs expr
632     Var f = fexpr
633     -- Change any arguments that have a function type, but are not simple yet
634     -- (ie, a variable or application). This means to create a new function
635     -- for map (\f -> ...) b, but not for map (foo a) b.
636     --
637     -- We could use is_applicable here instead of is_fun, but I think
638     -- arguments to functions could only have forall typing when existential
639     -- typing is enabled. Not sure, though.
640     doarg arg | not (is_simple arg) && is_fun arg = do
641       -- Create a new top level binding that binds the argument. Its body will
642       -- be extended with lambda expressions, to take any free variables used
643       -- by the argument expression.
644       let free_vars = VarSet.varSetElems $ CoreFVs.exprFreeVars arg
645       let body = MkCore.mkCoreLams free_vars arg
646       id <- Trans.lift $ mkBinderFor body "fun"
647       Trans.lift $ addGlobalBind id body
648       -- Replace the argument with a reference to the new function, applied to
649       -- all vars it uses.
650       change $ MkCore.mkCoreApps (Var id) (map Var free_vars)
651     -- Leave all other arguments untouched
652     doarg arg = return arg
653
654 -- Leave all other expressions unchanged
655 funextract expr = return expr
656 -- Perform this transform everywhere
657 funextracttop = everywhere ("funextract", funextract)
658
659 --------------------------------
660 -- Ensure that a function that just returns another function (or rather,
661 -- another top-level binder) is still properly normalized. This is a temporary
662 -- solution, we should probably integrate this pass with lambdasimpl and
663 -- letsimpl instead.
664 --------------------------------
665 simplrestop expr@(Lam _ _) = return expr
666 simplrestop expr@(Let _ _) = return expr
667 simplrestop expr = do
668   local_var <- Trans.lift $ is_local_var expr
669   -- Don't extract values that are not representable, to prevent loops with
670   -- inlinenonrep
671   repr <- isRepr expr
672   if local_var || not repr
673     then
674       return expr
675     else do
676       id <- Trans.lift $ mkBinderFor expr "res" 
677       change $ Let (NonRec id expr) (Var id)
678 --------------------------------
679 -- End of transformations
680 --------------------------------
681
682
683
684
685 -- What transforms to run?
686 transforms = [inlinetopleveltop, argproptop, funextracttop, etatop, betatop, castproptop, letremovesimpletop, letderectop, letremovetop, letsimpltop, letflattop, scrutsimpltop, casesimpltop, caseremovetop, inlinenonreptop, appsimpltop, letremoveunusedtop, castsimpltop, lambdasimpltop, simplrestop]
687
688 -- | Returns the normalized version of the given function.
689 getNormalized ::
690   CoreBndr -- ^ The function to get
691   -> TranslatorSession CoreExpr -- The normalized function body
692
693 getNormalized bndr = Utils.makeCached bndr tsNormalized $
694   if is_poly (Var bndr)
695     then
696       -- This should really only happen at the top level... TODO: Give
697       -- a different error if this happens down in the recursion.
698       error $ "\nNormalize.normalizeBind: Function " ++ show bndr ++ " is polymorphic, can't normalize"
699     else do
700       expr <- getBinding bndr
701       normalizeExpr (show bndr) expr
702
703 -- | Normalize an expression
704 normalizeExpr ::
705   String -- ^ What are we normalizing? For debug output only.
706   -> CoreSyn.CoreExpr -- ^ The expression to normalize 
707   -> TranslatorSession CoreSyn.CoreExpr -- ^ The normalized expression
708
709 normalizeExpr what expr = do
710       expr_uniqued <- genUniques expr
711       -- Normalize this expression
712       trace (what ++ " before normalization:\n\n" ++ showSDoc ( ppr expr_uniqued ) ++ "\n") $ return ()
713       expr' <- dotransforms transforms expr_uniqued
714       trace ("\n" ++ what ++ " after normalization:\n\n" ++ showSDoc ( ppr expr')) $ return ()
715       return expr'
716
717 -- | Get the value that is bound to the given binder at top level. Fails when
718 --   there is no such binding.
719 getBinding ::
720   CoreBndr -- ^ The binder to get the expression for
721   -> TranslatorSession CoreExpr -- ^ The value bound to the binder
722
723 getBinding bndr = Utils.makeCached bndr tsBindings $
724   -- If the binding isn't in the "cache" (bindings map), then we can't create
725   -- it out of thin air, so return an error.
726   error $ "Normalize.getBinding: Unknown function requested: " ++ show bndr
727
728 -- | Split a normalized expression into the argument binders, top level
729 --   bindings and the result binder.
730 splitNormalized ::
731   CoreExpr -- ^ The normalized expression
732   -> ([CoreBndr], [Binding], CoreBndr)
733 splitNormalized expr = (args, binds, res)
734   where
735     (args, letexpr) = CoreSyn.collectBinders expr
736     (binds, resexpr) = flattenLets letexpr
737     res = case resexpr of 
738       (Var x) -> x
739       _ -> error $ "Normalize.splitNormalized: Not in normal form: " ++ pprString expr ++ "\n"