X-Git-Url: https://git.stderr.nl/gitweb?p=matthijs%2Fmaster-project%2Freport.git;a=blobdiff_plain;f=Core2Core.tex;h=ae9c18976ba51daade3248d58c98b835ddba2a42;hp=384c84d970e67cc232c2c0fd48b0eb2e2c31efe4;hb=f3d8c0e61d2df140a1c6b83e720629383162e78c;hpb=c5928a5f3125abb89a1a9d09d7762d0ac12f95a9 diff --git a/Core2Core.tex b/Core2Core.tex index 384c84d..ae9c189 100644 --- a/Core2Core.tex +++ b/Core2Core.tex @@ -45,6 +45,15 @@ \stopframedtext } +% A shortcut for italicized e.g. and i.e. +\define[0]\eg{{\em e.g.}} +\define[0]\ie{{\em i.e.}} + +\definedescription + [desc] + [location=hanging,hang=20,width=broad] + %command=\hskip-1cm,margin=1cm] + % Install the lambda calculus pretty-printer, as defined in pret-lam.lua. \installprettytype [LAM] [LAM] @@ -382,6 +391,257 @@ in \transexample{Extended β-reduction}{from}{to} +\subsection{Argument simplification} +The transforms in this section deal with simplifying application +arguments into normal form. The goal here is to: + +\startitemize + \item Make all arguments of user-defined functions (\eg, of which + we have a function body) simple variable references of a runtime + representable type. + \item Make all arguments of builtin functions either: + \startitemize + \item A type argument. + \item A dictionary argument. + \item A type level expression. + \item A variable reference of a runtime representable type. + \item A variable reference or partial application of a function type. + \stopitemize +\stopitemize + +When looking at the arguments of a user-defined function, we can +divide them into two categories: +\startitemize + \item Arguments with a runtime representable type (\eg bits or vectors). + + These arguments can be preserved in the program, since they can + be translated to input ports later on. However, since we can + only connect signals to input ports, these arguments must be + reduced to simple variables (for which signals will be + produced). This is taken care of by the argument extraction + transform. + \item Non-runtime representable typed arguments. + + These arguments cannot be preserved in the program, since we + cannot represent them as input or output ports in the resulting + VHDL. To remove them, we create a specialized version of the + called function with these arguments filled in. This is done by + the argument propagation transform. +\stopitemize + +When looking at the arguments of a builtin function, we can divide them +into categories: + +\startitemize + \item Arguments with a runtime representable type. + + As we have seen with user-defined functions, these arguments can + always be reduced to a simple variable reference, by the + argument extraction transform. Performing this transform for + builtin functions as well, means that the translation of builtin + functions can be limited to signal references, instead of + needing to support all possible expressions. + + \item Arguments with a function type. + + These arguments are functions passed to higher order builtins, + like \lam{map} and \lam{foldl}. Since implementing these + functions for arbitrary function-typed expressions (\eg, lambda + expressions) is rather comlex, we reduce these arguments to + (partial applications of) global functions. + + We can still support arbitrary expressions from the user code, + by creating a new global function containing that expression. + This way, we can simply replace the argument with a reference to + that new function. However, since the expression can contain any + number of free variables we also have to include partial + applications in our normal form. + + This category of arguments is handled by the function extraction + transform. + \item Other unrepresentable arguments. + + These arguments can take a few different forms: + \startdesc{Type arguments} + In the core language, type arguments can only take a single + form: A type wrapped in the Type constructor. Also, there is + nothing that can be done with type expressions, except for + applying functions to them, so we can simply leave type + arguments as they are. + \stopdesc + \startdesc{Dictionary arguments} + In the core language, dictionary arguments are used to find + operations operating on one of the type arguments (mostly for + finding class methods). Since we will not actually evaluatie + the function body for builtin functions and can generate + code for builtin functions by just looking at the type + arguments, these arguments can be ignored and left as they + are. + \stopdesc + \startdesc{Type level arguments} + Sometimes, we want to pass a value to a builtin function, but + we need to know the value at compile time. Additionally, the + value has an impact on the type of the function. This is + encoded using type-level values, where the actual value of the + argument is not important, but the type encodes some integer, + for example. Since the value is not important, the actual form + of the expression does not matter either and we can leave + these arguments as they are. + \stopdesc + \startdesc{Other arguments} + Technically, there is still a wide array of arguments that can + be passed, but does not fall into any of the above categories. + However, none of the supported builtin functions requires such + an argument. This leaves use with passing unsupported types to + a function, such as calling \lam{head} on a list of functions. + + In these cases, it would be impossible to generate hardware + for such a function call anyway, so we can ignore these + arguments. + + The only way to generate hardware for builtin functions with + arguments like these, is to expand the function call into an + equivalent core expression (\eg, expand map into a series of + function applications). But for now, we choose to simply not + support expressions like these. + \stopdesc + + From the above, we can conclude that we can simply ignore these + other unrepresentable arguments and focus on the first two + categories instead. +\stopitemize + +\subsubsection{Argument extraction} +This transform deals with arguments to functions that +are of a runtime representable type. + +TODO: It seems we can map an expression to a port, not only a signal. +Perhaps this makes this transformation not needed? +TODO: Say something about dataconstructors (without arguments, like True +or False), which are variable references of a runtime representable +type, but do not result in a signal. + +To reduce a complex expression to a simple variable reference, we create +a new let expression around the application, which binds the complex +expression to a new variable. The original function is then applied to +this variable. + +\transform{Argument extract} +{ +\lam{Y} is of a hardware representable type + +\lam{Y} is not a variable referene + +\conclusion + +\trans{X Y}{let z = Y in X z} +} + +\subsubsection{Function extraction} +This transform deals with function-typed arguments to builtin functions. +Since these arguments cannot be propagated, we choose to extract them +into a new global function instead. + +Any free variables occuring in the extracted arguments will become +parameters to the new global function. The original argument is replaced +with a reference to the new function, applied to any free variables from +the original argument. + +\transform{Function extraction} +{ +\lam{X} is a (partial application of) a builtin function + +\lam{Y} is not an application + +\lam{Y} is not a variable reference + +\conclusion + +\lam{f0 ... fm} = free local vars of \lam{Y} + +\lam{y} is a new global variable + +\lam{y = λf0 ... fn.Y} + +\trans{X Y}{X (y f0 ... fn)} +} + +\subsubsection{Argument propagation} +This transform deals with arguments to user-defined functions that are +not representable at runtime. This means these arguments cannot be +preserved in the final form and most be {\em propagated}. + +Propagation means to create a specialized version of the called +function, with the propagated argument already filled in. As a simple +example, in the following program: + +\startlambda +f = λa.λb.a + b +inc = λa.f a 1 +\stoplambda + +we could {\em propagate} the constant argument 1, with the following +result: + +\startlambda +f' = λa.a + 1 +inc = λa.f' a +\stoplambda + +Special care must be taken when the to-be-propagated expression has any +free variables. If this is the case, the original argument should not be +removed alltogether, but replaced by all the free variables of the +expression. In this way, the original expression can still be evaluated +inside the new function. Also, this brings us closer to our goal: All +these free variables will be simple variable references. + +To prevent us from propagating the same argument over and over, a simple +local variable reference is not propagated (since is has exactly one +free variable, itself, we would only replace that argument with itself). + +This shows that any free local variables that are not runtime representable +cannot be brought into normal form by this transform. We rely on an +inlining transformation to replace such a variable with an expression we +can propagate again. + +TODO: Move these definitions somewhere sensible. + +Definition: A global variable is any variable that is bound at the +top level of a program. A local variable is any other variable. + +Definition: A hardware representable type is a type that we can generate +a signal for in hardware. For example, a bit, a vector of bits, a 32 bit +unsigned word, etc. Types that are not runtime representable notably +include (but are not limited to): Types, dictionaries, functions. + +Definition: A builtin function is a function for which a builtin +hardware translation is available, because its actual definition is not +translatable. A user-defined function is any other function. + +\transform{Argument propagation} +{ +\lam{x} is a global variable, bound to a user-defined function + +\lam{x = E} + +\lam{Y_i} is not of a runtime representable type + +\lam{Y_i} is not a local variable reference + +\conclusion + +\lam{f0 ... fm} = free local vars of \lam{Y_i} + +\lam{x'} is a new global variable + +\lam{x' = λy0 ... yi-1 f0 ... fm yi+1 ... yn . E y0 ... yi-1 Yi yi+1 ... yn} + +\trans{x Y0 ... Yi ... Yn}{x' y0 ... yi-1 f0 ... fm Yi+1 ... Yn} +} + +TODO: The above definition looks too complicated... Can we find +something more concise? + \subsection{Introducing main scope} This transformation is meant to introduce a single let expression that will be the "main scope". This is the let expression as described under requirement