Use η/β-expansion instead of η/β-abstraction.
[matthijs/master-project/report.git] / Chapters / Normalization.tex
index fba2c4a47d22b6fb09527fbd4f94ff40e87fd162..fd62fea830bb20103c8c653ef1ceeb5db745d2da 100644 (file)
@@ -36,7 +36,7 @@
     to this form as the \emph{normal form} of the program. The formal
     definition of this normal form is quite simple:
 
-    \placedefinition{}{\startboxed A program is in \emph{normal form} if none of the
+    \placedefinition[force]{}{\startboxed A program is in \emph{normal form} if none of the
     transformations from this chapter apply.\stopboxed}
 
     Of course, this is an \quote{easy} definition of the normal form, since our
       other expression.
     \stopitemize
 
-    \todo{Intermezzo: functions vs plain values}
-
-    A very simple example of a program in normal form is given in
-    \in{example}[ex:MulSum]. As you can see, all arguments to the function (which
-    will become input ports in the generated \VHDL) are at the outer level.
-    This means that the body of the inner lambda abstraction is never a
-    function, but always a plain value.
-
-    As the body of the inner lambda abstraction, we see a single (recursive)
-    let expression, that binds two variables (\lam{mul} and \lam{sum}). These
-    variables will be signals in the generated \VHDL, bound to the output port
-    of the \lam{*} and \lam{+} components.
-
-    The final line (the \quote{return value} of the function) selects the
-    \lam{sum} signal to be the output port of the function. This \quote{return
-    value} can always only be a variable reference, never a more complex
-    expression.
-
-    \todo{Add generated VHDL}
-
     \startbuffer[MulSum]
     alu :: Bit -> Word -> Word -> Word
     alu = λa.λb.λc.
       ncline(add)(sum);
     \stopuseMPgraphic
 
-    \placeexample[here][ex:MulSum]{Simple architecture consisting of a
+    \placeexample[][ex:MulSum]{Simple architecture consisting of a
     multiplier and a subtractor.}
       \startcombination[2*1]
         {\typebufferlam{MulSum}}{Core description in normal form.}
         {\boxedgraphic{MulSum}}{The architecture described by the normal form.}
       \stopcombination
 
+    \todo{Intermezzo: functions vs plain values}
+
+    A very simple example of a program in normal form is given in
+    \in{example}[ex:MulSum]. As you can see, all arguments to the function (which
+    will become input ports in the generated \VHDL) are at the outer level.
+    This means that the body of the inner lambda abstraction is never a
+    function, but always a plain value.
+
+    As the body of the inner lambda abstraction, we see a single (recursive)
+    let expression, that binds two variables (\lam{mul} and \lam{sum}). These
+    variables will be signals in the generated \VHDL, bound to the output port
+    of the \lam{*} and \lam{+} components.
+
+    The final line (the \quote{return value} of the function) selects the
+    \lam{sum} signal to be the output port of the function. This \quote{return
+    value} can always only be a variable reference, never a more complex
+    expression.
+
+    \todo{Add generated VHDL}
+
     \in{Example}[ex:MulSum] showed a function that just applied two
     other functions (multiplication and addition), resulting in a simple
     architecture with two components and some connections.  There is of
       ncline(mux)(res) "posA(out)";
     \stopuseMPgraphic
 
-    \placeexample[here][ex:AddSubAlu]{Simple \small{ALU} supporting two operations.}
+    \placeexample[][ex:AddSubAlu]{Simple \small{ALU} supporting two operations.}
       \startcombination[2*1]
         {\typebufferlam{AddSubAlu}}{Core description in normal form.}
         {\boxedgraphic{AddSubAlu}}{The architecture described by the normal form.}
     \stopuseMPgraphic
 
     \todo{Don't split registers in this image?}
-    \placeexample[here][ex:NormalComplete]{Simple architecture consisting of an adder and a
+    \placeexample[][ex:NormalComplete]{Simple architecture consisting of an adder and a
     subtractor.}
       \startcombination[2*1]
         {\typebufferlam{NormalComplete}}{Core description in normal form.}
       \stopdesc
 
     To understand this notation better, the step by step application of
-    the η-abstraction transformation to a simple \small{ALU} will be
-    shown. Consider η-abstraction, which is a common transformation from
+    the η-expansion transformation to a simple \small{ALU} will be
+    shown. Consider η-expansion, which is a common transformation from
     labmda calculus, described using above notation as follows:
 
     \starttrans
     λx.E x            \lam{E} is not a lambda abstraction.
     \stoptrans
 
-    η-abstraction is a well known transformation from lambda calculus. What
+    η-expansion is a well known transformation from lambda calculus. What
     this transformation does, is take any expression that has a function type
     and turn it into a lambda expression (giving an explicit name to the
     argument). There are some extra conditions that ensure that this
     transformation does not apply infinitely (which are not necessarily part
-    of the conventional definition of η-abstraction).
+    of the conventional definition of η-expansion).
 
     Consider the following function, in Core notation, which is a fairly obvious way to specify a
     simple \small{ALU} (Note that it is not yet in normal form, but
     \stoplambda
 
     The other alternative is left as an exercise to the reader. The final
-    function, after applying η-abstraction until it does no longer apply is:
+    function, after applying η-expansion until it does no longer apply is:
 
     \startlambda 
     alu :: Bit -> Word -> Word -> Word
       of the other value definitions in let bindings and making the final
       return value a simple variable reference.
 
-      \subsubsection[sec:normalization:eta]{η-abstraction}
+      \subsubsection[sec:normalization:eta]{η-expansion}
         This transformation makes sure that all arguments of a function-typed
         expression are named, by introducing lambda expressions. When combined with
         β-reduction and non-representable binding inlining, all function-typed
             False -> λy.id y) x
         \stopbuffer
 
-        \transexample{eta}{η-abstraction}{from}{to}
+        \transexample{eta}{η-expansion}{from}{to}
 
       \subsubsection[sec:normalization:appprop]{Application propagation}
         This transformation is meant to propagate application expressions downwards
         Note that the return value is not simplified if its not
         representable.  Otherwise, this would cause a direct loop with
         the inlining of unrepresentable bindings. If the return value is
-        not representable because it has a function type, η-abstraction
+        not representable because it has a function type, η-expansion
         should make sure that this transformation will eventually apply.
         If the value is not representable for other reasons, the
         function result itself is not representable, meaning this
         \stoptrans
 
         \starttrans
-        x = λv0 ... λvn.E
-        ~                                \lam{E} is representable
+        x = λv0 ... λvn.E                \lam{E} is representable
+        ~                                \lam{E} is not a lambda abstraction
         E                                \lam{E} is not a let expression
         ---------------------------      \lam{E} is not a local variable reference
         letrec x = E in x
           \stopframedtext
         }
 
+      \subsubsection{Scrutinee binder removal}
+        This transformation removes (or rather, makes wild) the binder to
+        which the scrutinee is bound after evaluation. This is done by
+        replacing the bndr with the scrutinee in all alternatives. To prevent
+        duplication of work, this transformation is only applied when the
+        scrutinee is already a simple variable reference (but the previous
+        transformation ensures this will eventually be the case). The
+        scrutinee binder itself is replaced by a wild binder (which is no
+        longer displayed).
+
+        Note that one could argue that this transformation can change the
+        meaning of the Core expression. In the regular Core semantics, a case
+        expression forces the evaluation of its scrutinee and can be used to
+        implement strict evaluation. However, in the generated \VHDL,
+        evaluation is always strict. So the semantics we assign to the Core
+        expression (which differ only at this particular point), this
+        transformation is completely valid.
+
+        \starttrans
+        case x of bndr
+          alts
+        -----------------        \lam{x} is a local variable reference
+        case x of
+          alts[bndr=>x]
+        \stoptrans
+
+        \startbuffer[from]
+        case x of y
+          True -> y
+          False -> not y
+        \stopbuffer
+
+        \startbuffer[to]
+        case x of
+          True -> x
+          False -> not x
+        \stopbuffer
+
+        \transexample{scrutbndrremove}{Scrutinee binder removal}{from}{to}
+
       \subsubsection{Case normalization}
         This transformation ensures that all case expressions get a form
         that is allowed by the intended normal form. This means they
         lambda abstraction.
 
         To reduce all higher-order values to one of the above items, a number
-        of transformations we have already seen are used. The η-abstraction
+        of transformations we have already seen are used. The η-expansion
         transformation from \in{section}[sec:normalization:eta] ensures all
         function arguments are introduced by lambda abstraction on the highest
         level of a function. These lambda arguments are allowed because of
-        \in{item}[item:toplambda] above. After η-abstraction, our example
+        \in{item}[item:toplambda] above. After η-expansion, our example
         becomes a bit bigger:
 
         \startlambda
               ) q
         \stoplambda
 
-        η-abstraction also introduces extra applications (the application of
+        η-expansion also introduces extra applications (the application of
         the let expression to \lam{q} in the above example). These
         applications can then propagated down by the application propagation
         transformation (\in{section}[sec:normalization:appprop]). In our
         representable type). Completely applied top level functions (like the
         first alternative) are now no longer invalid (they fall under
         \in{item}[item:completeapp] above). (Completely) applied lambda
-        abstractions can be removed by β-abstraction. For our example,
-        applying β-abstraction results in the following:
+        abstractions can be removed by β-expansion. For our example,
+        applying β-expansion results in the following:
 
         \startlambda
         λy.λq.let double = λx. x + x in