Replace a starttyping with starthaskell.
[matthijs/master-project/report.git] / Chapters / HardwareDescription.tex
index 0717a76150a7729a81b1a00da2e3e6dce5198004..eab0a49bc0a0f2c26b75b559dec755b27b8c9356 100644 (file)
@@ -29,7 +29,7 @@
       binder that is bound inside a function.
 
       In Haskell, there is no sharp distinction between a variable and a
-      function: A function is just a variable (binder) with a function
+      function: a function is just a variable (binder) with a function
       type. This means that a top level function is just any top level
       binder with a function type.
 
@@ -58,7 +58,7 @@
   \section[sec:description:application]{Function application}
   The basic syntactic elements of a functional program are functions and
   function application. These have a single obvious \small{VHDL}
-  translation: Each top level function becomes a hardware component, where each
+  translation: each top level function becomes a hardware component, where each
   argument is an input port and the result value is the (single) output
   port. This output port can have a complex type (such as a tuple), so
   having just a single output port does not pose a limitation.
@@ -123,14 +123,14 @@ and3 a b c = and (and a b) c
 
   \section{Choice}
     Although describing components and connections allows us to describe a lot of
-    hardware designs already, there is an obvious thing missing: Choice. We
+    hardware designs already, there is an obvious thing missing: choice. We
     need some way to be able to choose between values based on another value.
     In Haskell, choice is achieved by \hs{case} expressions, \hs{if}
     expressions, pattern matching and guards.
 
     An obvious way to add choice to our language without having to recognize
     any of Haskell's syntax, would be to add a primivite \quote{\hs{if}}
-    function. This function would take three arguments: The condition, the
+    function. This function would take three arguments: the condition, the
     value to return when the condition is true and the value to return when
     the condition is false.
 
@@ -244,7 +244,7 @@ and3 a b c = and (and a b) c
 
     The architecture described by \in{example}[ex:PatternInv] is of course the
     same one as the one in \in{example}[ex:CaseInv]. The general interpretation
-    of pattern matching is also similar to that of \hs{case} expressions: Generate
+    of pattern matching is also similar to that of \hs{case} expressions: generate
     hardware for each of the clauses (like each of the clauses of a \hs{case}
     expression) and connect them to the function output through (a number of
     nested) multiplexers. These multiplexers are driven by comparators and
@@ -257,7 +257,7 @@ and3 a b c = and (and a b) c
 
   \section{Types}
     Translation of two most basic functional concepts has been
-    discussed: Function application and choice. Before looking further
+    discussed: function application and choice. Before looking further
     into less obvious concepts like higher-order expressions and
     polymorphism, the possible types that can be used in hardware
     descriptions will be discussed.
@@ -323,12 +323,12 @@ and3 a b c = and (and a b) c
       \stopdesc
       \startdesc{\hs{Vector}}
         This is a vector type, that can contain elements of any other type and
-        has a fixed length. It has two type parameters: Its
+        has a fixed length. It has two type parameters: its
         length and the type of the elements contained in it. By putting the
         length parameter in the type, the length of a vector can be determined
         at compile time, instead of only at runtime for conventional lists.
 
-        The \hs{Vector} type constructor takes two type arguments: The length
+        The \hs{Vector} type constructor takes two type arguments: the length
         of the vector and the type of the elements contained in it. The state
         type of an 8 element register bank would then for example be:
 
@@ -351,7 +351,7 @@ and3 a b c = and (and a b) c
         A \hs{RangedWord} only has an upper bound, its lower bound is
         implicitly zero. There is a lot of added implementation complexity
         when adding a lower bound and having just an upper bound was enough
-        for the primary purpose of this type: Typesafely indexing vectors.
+        for the primary purpose of this type: typesafely indexing vectors.
 
         To define an index for the 8 element vector above, we would do:
 
@@ -372,7 +372,7 @@ and3 a b c = and (and a b) c
       in \cite[baaij09].
 
     \subsection{User-defined types}
-      There are three ways to define new types in Haskell: Algebraic
+      There are three ways to define new types in Haskell: algebraic
       datatypes with the \hs{data} keyword, type synonyms with the \hs{type}
       keyword and type renamings with the \hs{newtype} keyword. \GHC\
       offers a few more advanced ways to introduce types (type families,
@@ -455,7 +455,7 @@ and3 a b c = and (and a b) c
         fields of the \hs{Sum} type are valid (the first two if \hs{A}, the
         last one if \hs{B}), all the other ones have no useful value.
 
-        An obvious problem with this naive approach is the space usage: The
+        An obvious problem with this naive approach is the space usage: the
         example above generates a fairly big \VHDL\ type. Since we can be
         sure that the two \hs{Word}s in the \hs{Sum} type will never be valid
         at the same time, this is a waste of space.
@@ -470,7 +470,7 @@ and3 a b c = and (and a b) c
       \stopdesc
 
       Another interesting case is that of recursive types. In Haskell, an
-      algebraic datatype can be recursive: Any of its field types can be (or
+      algebraic datatype can be recursive: any of its field types can be (or
       contain) the type being defined. The most well-known recursive type is
       probably the list type, which is defined is:
       
@@ -480,35 +480,35 @@ and3 a b c = and (and a b) c
 
       Note that \hs{Empty} is usually written as \hs{[]} and \hs{Cons} as
       \hs{:}, but this would make the definition harder to read.  This
-      immediately shows the problem with recursive types: What hardware type
+      immediately shows the problem with recursive types: what hardware type
       to allocate here? 
       
       If the naive approach for sum types described above would be used,
       a record would be created where the first field is an enumeration
       to distinguish \hs{Empty} from \hs{Cons}. Furthermore, two more
-      fields would be added: One with the (\VHDL\ equivalent of) type
+      fields would be added: one with the (\VHDL\ equivalent of) type
       \hs{t} (assuming this type is actually known at compile time, this
       should not be a problem) and a second one with type \hs{List t}.
-      The latter one is of course a problem: This is exactly the type
+      The latter one is of course a problem: this is exactly the type
       that was to be translated in the first place.
       
       The resulting \VHDL\ type will thus become infinitely deep. In
       other words, there is no way to statically determine how long
       (deep) the list will be (it could even be infinite).
       
-      In general, recursive types can never be properly translated: All
+      In general, recursive types can never be properly translated: all
       recursive types have a potentially infinite value (even though in
       practice they will have a bounded value, there is no way for the
       compiler to automatically determine an upper bound on its size).
 
   \subsection{Partial application}
   Now the translation of application, choice and types has been
-  discussed, a more complex concept can be considered: Partial
+  discussed, a more complex concept can be considered: partial
   applications. A \emph{partial application} is any application whose
   (return) type is (again) a function type.
 
   From this, it should be clear that the translation rules for full
-  application does not apply to a partial application: There are not
+  application does not apply to a partial application: there are not
   enough values for all the input ports in the resulting \VHDL.
   \in{Example}[ex:Quadruple] shows an example use of partial application
   and the corresponding architecture.
@@ -555,7 +555,7 @@ quadruple n = mul (mul n)
       {\boxedgraphic{Quadruple}}{The architecture described by the Haskell description.}
     \stopcombination
 
-  Here, the definition of mul is a partial function application: It applies
+  Here, the definition of mul is a partial function application: it applies
   the function \hs{(*) :: Word -> Word -> Word} to the value \hs{2 :: Word},
   resulting in the expression \hs{(*) 2 :: Word -> Word}. Since this resulting
   expression is again a function, hardware cannot be generated for it
@@ -582,7 +582,7 @@ quadruple n = mul (mul n)
     function is the same (of course, if a particular value, such as the result
     of a function application, is used twice, it is not calculated twice).
 
-    This is distinctly different from normal program compilation: Two separate
+    This is distinctly different from normal program compilation: two separate
     calls to the same function share the same machine code. Having more
     machine code has implications for speed (due to less efficient caching)
     and memory usage. For normal compilation, it is therefore important to
@@ -661,16 +661,16 @@ quadruple n = mul (mul n)
     \fxnote{This section needs improvement and an example}
 
   \section{Polymorphism}
-    In Haskell, values can be \emph{polymorphic}: They can have multiple types. For
+    In Haskell, values can be \emph{polymorphic}: they can have multiple types. For
     example, the function \hs{fst :: (a, b) -> a} is an example of a
-    polymorphic function: It works for tuples with any two element types. Haskell
+    polymorphic function: it works for tuples with any two element types. Haskell
     type classes allow a function to work on a specific set of types, but the
     general idea is the same. The opposite of this is a \emph{monomorphic}
     value, which has a single, fixed, type.
 
 %    A type class is a collection of types for which some operations are
 %    defined. It is thus possible for a value to be polymorphic while having
-%    any number of \emph{class constraints}: The value is not defined for
+%    any number of \emph{class constraints}: the value is not defined for
 %    every type, but only for types in the type class. An example of this is
 %    the \hs{even :: (Integral a) => a -> Bool} function, which can map any
 %    value of a type that is member of the \hs{Integral} type class 
@@ -682,7 +682,7 @@ quadruple n = mul (mul n)
     Note that Cλash currently does not allow user-defined type classes,
     but does partly support some of the built-in type classes (like \hs{Num}).
 
-    Fortunately, we can again use the principle of specialization: Since every
+    Fortunately, we can again use the principle of specialization: since every
     function application generates a separate piece of hardware, we can know
     the types of all arguments exactly. Provided that existential typing
     (which is a \GHC\ extension) is not used typing, all of the
@@ -766,7 +766,7 @@ quadruple n = mul (mul n)
 
       So our functions must remain pure, meaning the current state has
       to be present in the function's arguments in some way. There seem
-      to be two obvious ways to do this: Adding the current state as an
+      to be two obvious ways to do this: adding the current state as an
       argument, or including the full history of each argument.
 
       \subsubsection{Stream arguments and results}
@@ -812,7 +812,7 @@ quadruple n = mul (mul n)
         stream so that we can "look into" the past. This \hs{delay} function
         simply outputs a stream where each value is the same as the input
         value, but shifted one cycle. This causes a \quote{gap} at the
-        beginning of the stream: What is the value of the delay output in the
+        beginning of the stream: what is the value of the delay output in the
         first cycle? For this, the \hs{delay} function has a second input, of
         which only a single value is used.
 
@@ -925,7 +925,7 @@ acc in s = (s', out)
         part) is dependent on its own implementation and of the functions it
         calls.
 
-        This is the major downside of this approach: The separation between
+        This is the major downside of this approach: the separation between
         interface and implementation is limited. However, since Cλash is not
         very suitable for separate compilation (see
         \in{section}[sec:prototype:separate]) this is not a big problem in
@@ -946,7 +946,7 @@ acc in s = (s', out)
         deduce the statefulness of subfunctions by analyzing the flow of data
         in the calling functions?
 
-        To explore this matter, the following observeration is interesting: We
+        To explore this matter, the following observeration is interesting: we
         get completely correct behaviour when we put all state registers in
         the top level entity (or even outside of it). All of the state
         arguments and results on subfunctions are treated as normal input and
@@ -996,7 +996,7 @@ acc in s = (s', out)
         end up is easier to implement correctly with explicit annotations, so
         for these reasons we will look at how this annotations could work.
 
-        \todo{Sidenote: One or more state arguments?}
+        \todo{Sidenote: one or more state arguments?}
 
     \subsection[sec:description:stateann]{Explicit state annotation}
       To make our stateful descriptions unambigious and easier to translate,