
CλasH
From Haskell To Hardware

Christiaan Baaij & Matthijs Kooijman

September 3, 2009

Computer Architecture for Embedded Systems (CAES) group
Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente
http://caes.ewi.utwente.nl Enschede, The Netherlands

CλasH - From Haskell To Hardware September 3, 2009 1/ 20

http://caes.ewi.utwente.nl

What will we see?

Small tour: what can we describe in CλasH

Quick real demo

CλasH - From Haskell To Hardware September 3, 2009 2/ 20

What will we see?

Small tour: what can we describe in CλasH

Quick real demo
20

09
-0

8-
25

CλasH

Introduction

What will you see

What will we see?

Virtuele demo

What is CλasH?

CλasH: CAES Language for Hardware Descriptions

Rapid prototyping language

Subset of Haskell can be translated to Hardware
(VHDL)

Structural Description of a Mealy Machine

CλasH - From Haskell To Hardware September 3, 2009 3/ 20

What is CλasH?

CλasH: CAES Language for Hardware Descriptions

Rapid prototyping language

Subset of Haskell can be translated to Hardware
(VHDL)

Structural Description of a Mealy Machine

20
09

-0
8-

25

CλasH

Introduction

What is CλasH

What is CλasH?

• Wij zijn wij
• CλasH voor rapid prototyping
• Subset haskell vertaalbaar
• Mealy machine beschrijving

Mealy Machine

Inputs Outputs

Present
State

Combinatorial
Logic

Memory
Elements

CλasH - From Haskell To Hardware September 3, 2009 4/ 20

Mealy Machine

Inputs Outputs

Present
State

Combinatorial
Logic

Memory
Elements20

09
-0

8-
25

CλasH

Introduction

Mealy Machine

Mealy Machine

Voor wie het niet meer weet, dit is een mealy machine

Haskell Description

mealyMachine ::
InputSignals →
State →
(State,OutputSignals)

mealyMachine inputs state = (new state, output)
where

new state = logic state input
outputs = logic state input

CλasH - From Haskell To Hardware September 3, 2009 5/ 20

Haskell Description

mealyMachine ::
InputSignals →
State →
(State,OutputSignals)

mealyMachine inputs state = (new state, output)
where

new state = logic state input
outputs = logic state input

CλasH - From Haskell To Hardware September 3, 2009 5/ 20

Haskell Description

mealyMachine ::
InputSignals →
State →
(State,OutputSignals)

mealyMachine inputs state = (new state, output)
where

new state = logic state input
outputs = logic state input

CλasH - From Haskell To Hardware September 3, 2009 5/ 20

Simulating a Mealy Machine

run func state [] = []
run func state (i : input) = o : out

where
(state ′, o) = func state i
out = run func state ′ input

CλasH - From Haskell To Hardware September 3, 2009 6/ 20

Simulating a Mealy Machine

run func state [] = []
run func state (i : input) = o : out

where
(state ′, o) = func state i
out = run func state ′ input

CλasH - From Haskell To Hardware September 3, 2009 6/ 20

Simulating a Mealy Machine

run func state [] = []
run func state (i : input) = o : out

where
(state ′, o) = func state i
out = run func state ′ input

CλasH - From Haskell To Hardware September 3, 2009 6/ 20

Small Use Case

Small Polymorphic, Higher-Order CPU

Each function is turned into a hardware
component

Use of state will be simple

CλasH - From Haskell To Hardware September 3, 2009 7/ 20

Imports

Import all the built-in types, such as vectors and integers:

import CLasH .HardwareTypes

Import annotations, helps CλasH to find top-level component:

import CLasH .Translator .Annotations

CλasH - From Haskell To Hardware September 3, 2009 8/ 20

Imports

Import all the built-in types, such as vectors and integers:

import CLasH .HardwareTypes

Import annotations, helps CλasH to find top-level component:

import CLasH .Translator .Annotations

CλasH - From Haskell To Hardware September 3, 2009 8/ 20

First we define some ALU types:

type Op s a = a→ Vector s a→ a
type Opcode = Bit

And some Register types:

type RegBank s a = Vector (s + D1) a
type RegState s a = State (RegBank s a)

And a simple Word type:

type Word = SizedInt D12

CλasH - From Haskell To Hardware September 3, 2009 9/ 20

First we define some ALU types:

type Op s a = a→ Vector s a→ a
type Opcode = Bit

And some Register types:

type RegBank s a = Vector (s + D1) a
type RegState s a = State (RegBank s a)

And a simple Word type:

type Word = SizedInt D12

CλasH - From Haskell To Hardware September 3, 2009 9/ 20

First we define some ALU types:

type Op s a = a→ Vector s a→ a
type Opcode = Bit

And some Register types:

type RegBank s a = Vector (s + D1) a
type RegState s a = State (RegBank s a)

And a simple Word type:

type Word = SizedInt D12

CλasH - From Haskell To Hardware September 3, 2009 9/ 20

We make a primitive operation:

primOp :: (a→ a→ a)→ Op s a
primOp f a b = a ‘f ‘ a

We make a vector operation:

vectOp :: (a→ a→ a)→ Op s a
vectOp f a b = foldl f a b

CλasH - From Haskell To Hardware September 3, 2009 10/ 20

We make a primitive operation:

primOp :: (a→ a→ a)→ Op s a
primOp f a b = a ‘f ‘ a

We make a vector operation:

vectOp :: (a→ a→ a)→ Op s a
vectOp f a b = foldl f a b

CλasH - From Haskell To Hardware September 3, 2009 10/ 20

We make a primitive operation:

primOp :: (a→ a→ a)→ Op s a
primOp f a b = a ‘f ‘ a

We make a vector operation:

vectOp :: (a→ a→ a)→ Op s a
vectOp f a b = foldl f a b

CλasH - From Haskell To Hardware September 3, 2009 10/ 20

We define a polymorphic ALU:

alu ::
Op s a→
Op s a→
Opcode → a→ Vector s a→ a

alu op1 op2 Low a b = op1 a b
alu op1 op2 High a b = op2 a b

CλasH - From Haskell To Hardware September 3, 2009 11/ 20

We define a polymorphic ALU:

alu ::
Op s a→
Op s a→
Opcode → a→ Vector s a→ a

alu op1 op2 Low a b = op1 a b
alu op1 op2 High a b = op2 a b

CλasH - From Haskell To Hardware September 3, 2009 11/ 20

Make a simple register bank:

registerBank ::
(Some context...)⇒
(RegState s a)→ a→ RangedWord s →
RangedWord s → Bit → ((RegState s a), a)

registerBank (State mem) data in rdaddr wraddr wrenable =
((State mem′), data out)
where

data out = mem ! rdaddr
mem′ | wrenable ≡ Low = mem

| otherwise = replace mem wraddr data in

CλasH - From Haskell To Hardware September 3, 2009 12/ 20

Make a simple register bank:

registerBank ::
(Some context...)⇒
(RegState s a)→ a→ RangedWord s →
RangedWord s → Bit → ((RegState s a), a)

registerBank (State mem) data in rdaddr wraddr wrenable =
((State mem′), data out)
where

data out = mem ! rdaddr
mem′ | wrenable ≡ Low = mem

| otherwise = replace mem wraddr data in

CλasH - From Haskell To Hardware September 3, 2009 12/ 20

Combining ALU and register bank:

{−#ANN actual cpu TopEntity#−}
actual cpu ::

(Opcode,Word ,Vector D4 Word ,RangedWord D9 ,
RangedWord D9 ,Bit)→ RegState D9 Word →
(RegState D9 Word ,Word)

actual cpu (opc , a, b, rdaddr ,wraddr ,wren) ram =
(ram′, alu out)
where

alu out = alu simpleOp vectorOp opc ram out b
(ram′, ram out) = registerBank ram a rdaddr wraddr wren
simpleOp = primOp (+)
vectorOp = vectOp (+)

CλasH - From Haskell To Hardware September 3, 2009 13/ 20

Combining ALU and register bank:

{−#ANN actual cpu TopEntity#−}
actual cpu ::

(Opcode,Word ,Vector D4 Word ,RangedWord D9 ,
RangedWord D9 ,Bit)→ RegState D9 Word →
(RegState D9 Word ,Word)

actual cpu (opc , a, b, rdaddr ,wraddr ,wren) ram =
(ram′, alu out)
where

alu out = alu simpleOp vectorOp opc ram out b
(ram′, ram out) = registerBank ram a rdaddr wraddr wren
simpleOp = primOp (+)
vectorOp = vectOp (+)

CλasH - From Haskell To Hardware September 3, 2009 13/ 20

Is CλasH usable?

It can be used for more than toy examples

We designed a matrix reduction circuit

We simulated it in Haskell

Simulation results in VHDL match

Synthesis completes without errors or warnings

CλasH - From Haskell To Hardware September 3, 2009 14/ 20

Is CλasH usable?

It can be used for more than toy examples

We designed a matrix reduction circuit

We simulated it in Haskell

Simulation results in VHDL match

Synthesis completes without errors or warnings

CλasH - From Haskell To Hardware September 3, 2009 14/ 20

Is CλasH usable?

It can be used for more than toy examples

We designed a matrix reduction circuit

We simulated it in Haskell

Simulation results in VHDL match

Synthesis completes without errors or warnings

CλasH - From Haskell To Hardware September 3, 2009 14/ 20

Is CλasH usable?

It can be used for more than toy examples

We designed a matrix reduction circuit

We simulated it in Haskell

Simulation results in VHDL match

Synthesis completes without errors or warnings

CλasH - From Haskell To Hardware September 3, 2009 14/ 20

Is CλasH usable?

It can be used for more than toy examples

We designed a matrix reduction circuit

We simulated it in Haskell

Simulation results in VHDL match

Synthesis completes without errors or warnings

CλasH - From Haskell To Hardware September 3, 2009 14/ 20

Is CλasH usable?

It can be used for more than toy examples

We designed a matrix reduction circuit

We simulated it in Haskell

Simulation results in VHDL match

Synthesis completes without errors or warnings

CλasH - From Haskell To Hardware September 3, 2009 14/ 20

So how do you make Hardware from Haskell?

In three simple steps

No Effort:
GHC API Parses, Typechecks and Desugars
Haskell

Hard.. sort of:
Transform resulting Core, GHC’s Intermediate
Language, to a normal form

Easy:
Translate Normalized Core to synthesizable VHDL

CλasH - From Haskell To Hardware September 3, 2009 15/ 20

So how do you make Hardware from Haskell?

In three simple steps

No Effort:
GHC API Parses, Typechecks and Desugars
Haskell

Hard.. sort of:
Transform resulting Core, GHC’s Intermediate
Language, to a normal form

Easy:
Translate Normalized Core to synthesizable VHDL

CλasH - From Haskell To Hardware September 3, 2009 15/ 20

So how do you make Hardware from Haskell?

In three simple steps

No Effort:
GHC API Parses, Typechecks and Desugars
Haskell

Hard.. sort of:
Transform resulting Core, GHC’s Intermediate
Language, to a normal form

Easy:
Translate Normalized Core to synthesizable VHDL

CλasH - From Haskell To Hardware September 3, 2009 15/ 20

So how do you make Hardware from Haskell?

In three simple steps

No Effort:
GHC API Parses, Typechecks and Desugars
Haskell

Hard.. sort of:
Transform resulting Core, GHC’s Intermediate
Language, to a normal form

Easy:
Translate Normalized Core to synthesizable VHDL

CλasH - From Haskell To Hardware September 3, 2009 15/ 20

How do we use CλasH?

As a library:

Import the module: CLasH.Translator

And call makeVHDLAnnotations ghc lib dir
[files to translate]

Customized GHC:

Call GHC with the –vhdl flag

Use the :vhdl command in GHCi

CλasH - From Haskell To Hardware September 3, 2009 16/ 20

Real Demo

We will simulate the small CPU from earlier

Translate the CPU code to VHDL

Simulate the generated VHDL

Synthesize the VHDL to get a hardware schematic

CλasH - From Haskell To Hardware September 3, 2009 17/ 20

Some final words

Still a lot to do: make a bigger subset of Haskell
translatable

Real world designs work

We bring functional expressivity to hardware
designs

CλasH - From Haskell To Hardware September 3, 2009 18/ 20

Thank you for listening

CλasH - From Haskell To Hardware September 3, 2009 19/ 20

Complete signature for registerBank

registerBank ::
(NaturalT s
,PositiveT (s + D1)
, ((s + D1) > s)∼True))⇒
(RegState s a)→ a→ RangedWord s →
RangedWord s → Bit → ((RegState s a), a)

CλasH - From Haskell To Hardware September 3, 2009 20/ 20

	Introduction
	What will you see
	What is CLasH
	Mealy Machine
	Simulation

	Polymorphic, Higher-Order CPU
	Introduction
	Type Definitions
	Frameworks for Operations
	Polymorphic, Higher-Order ALU
	Register bank
	Simple CPU: ALU & Register Bank

	Real Hardware Designs
	How do you make Hardware from Haskell?
	Demonstration
	Conclusion

