X-Git-Url: https://git.stderr.nl/gitweb?p=matthijs%2Fmaster-project%2Fdsd-paper.git;a=blobdiff_plain;f=c%CE%BBash.lhs;h=c4a281f53f9d3e481545c29f745b401d9c30428e;hp=7673139de694e58f66ac4a3218053e62d4755931;hb=9cc0ced6d48897fdc2253bb35b0c1b8c49f84f83;hpb=cd09f87baad1da1101776a0f68d7290af056eaf0 diff --git "a/c\316\273ash.lhs" "b/c\316\273ash.lhs" index 7673139..c4a281f 100644 --- "a/c\316\273ash.lhs" +++ "b/c\316\273ash.lhs" @@ -606,10 +606,7 @@ by an (optimizing) \VHDL\ synthesis tool. % against the constructors in the \hs{case} expressions. We can see two versions of a contrived example below, the first using a \hs{case} construct and the other using a \hs{if-then-else} - constructs, in the code below. The example sums two values when they are - equal or non-equal (depending on the predicate given) and returns 0 - otherwise. Both versions of the example roughly correspond to the same - netlist, which is depicted in \Cref{img:choice}. + constructs, in the code below. \begin{code} sumif pred a b = case pred of @@ -634,6 +631,11 @@ by an (optimizing) \VHDL\ synthesis tool. \caption{Choice - sumif} \label{img:choice} \end{figure} + + The example sums two values when they are equal or non-equal (depending on + the predicate given) and returns 0 otherwise. Both versions of the example + roughly correspond to the same netlist, which is depicted in + \Cref{img:choice}. A slightly more complex (but very powerful) form of choice is pattern matching. A function can be defined in multiple clauses, where each clause @@ -1133,7 +1135,7 @@ tools for formal verification. Lava descriptions are actually circuit generators when viewed from a synthesis viewpoint, in that the language elements of Haskell, such as choice, can be used to guide the circuit generation. If a developer wants to insert a choice element inside an actual -circuit he will have to specify this explicitly as a component. +circuit he will have to explicitly instantiate a multiplexer-like component. In this respect \CLaSH\ differs from Lava, in that all the choice elements, such as case-statements and pattern matching, are synthesized to choice @@ -1143,11 +1145,9 @@ mentioned in this section. The merits of polymorphic typing, combined with higher-order functions, are now also recognized in the `main-stream' hardware description languages, -exemplified by the new \VHDL-2008 standard~\cite{VHDL2008}. \VHDL-2008 has -support to specify types as generics, thus allowing a developer to describe +exemplified by the new \VHDL-2008 standard~\cite{VHDL2008}. \VHDL-2008 support for generics has been extended to types, allowing a developer to describe polymorphic components. Note that those types still require an explicit -generic map, whereas type-inference and type-specialization are implicit in -\CLaSH. +generic map, whereas types can be automatically inferred in \CLaSH. % Wired~\cite{Wired},, T-Ruby~\cite{T-Ruby}, Hydra~\cite{Hydra}. %