X-Git-Url: https://git.stderr.nl/gitweb?p=matthijs%2Fmaster-project%2Fdsd-paper.git;a=blobdiff_plain;f=c%CE%BBash.lhs;h=362fe5831c8679cd38292a76c03381bbf84456b6;hp=eb7d1fff8a11e82981bbb3b68a084b04ac06813a;hb=f513b84e02a6bd0215334379dda9b74a19d178ab;hpb=0025553cc63de81213b530f9277c617da74d1452 diff --git "a/c\316\273ash.lhs" "b/c\316\273ash.lhs" index eb7d1ff..362fe58 100644 --- "a/c\316\273ash.lhs" +++ "b/c\316\273ash.lhs" @@ -375,6 +375,9 @@ \newcommand{\fref}[1]{\cref{#1}} \newcommand{\Fref}[1]{\Cref{#1}} +\usepackage{epstopdf} + +\epstopdfDeclareGraphicsRule{.svg}{pdf}{.pdf}{rsvg-convert --format=pdf < #1 > \noexpand\OutputFile} %include polycode.fmt %include clash.fmt @@ -442,7 +445,15 @@ c.p.r.baaij@@utwente.nl, matthijs@@stdin.nl, j.kuper@@utwente.nl}} \begin{abstract} %\boldmath -The abstract goes here. +\CLaSH\ is a functional hardware description language that borrows both its +syntax and semantics from the functional programming language Haskell. Circuit +descriptions can be translated to synthesizable VHDL using the prototype +\CLaSH\ compiler. As the circuit descriptions are made in plain Haskell, +simulations can also be compiled by a Haskell compiler. + +The use of polymorphism and higher-order functions allow a circuit designer to +describe more abstract and general specifications than are possible in the +traditional hardware description languages. \end{abstract} % IEEEtran.cls defaults to using nonbold math in the Abstract. % This preserves the distinction between vectors and scalars. However, @@ -509,7 +520,7 @@ in Haskell as a domain specific languages. As far as the authors know, such extensive support for choice-elements is new in the domain of functional hardware description languages. As the hardware descriptions are plain Haskell functions, these descriptions can be compiled for simulation using an -optimizing Haskell compiler such as the Glasgow Haskell Compiler (\GHC). +optimizing Haskell compiler such as the Glasgow Haskell Compiler (\GHC)~\cite{ghc}. Where descriptions in a conventional hardware description language have an explicit clock for the purpose state and synchronicity, the clock is implied @@ -525,7 +536,7 @@ functional hardware description language must eventually be converted into a netlist. This research also features a prototype translator called \CLaSH\ (pronounced: clash), which converts the Haskell code to equivalently behaving synthesizable \VHDL\ code, ready to be converted to an actual netlist format -by any (optimizing) \VHDL\ synthesis tool. +by an (optimizing) \VHDL\ synthesis tool. \section{Hardware description in Haskell} @@ -562,7 +573,7 @@ by any (optimizing) \VHDL\ synthesis tool. \end{code} \begin{figure} - \centerline{\includegraphics{mac}} + \centerline{\includegraphics{mac.svg}} \caption{Combinatorial Multiply-Accumulate} \label{img:mac-comb} \end{figure} @@ -576,7 +587,7 @@ by any (optimizing) \VHDL\ synthesis tool. \end{code} \begin{figure} - \centerline{\includegraphics{mac-nocurry}} + \centerline{\includegraphics{mac-nocurry.svg}} \caption{Combinatorial Multiply-Accumulate (complex input)} \label{img:mac-comb-nocurry} \end{figure} @@ -619,7 +630,7 @@ by any (optimizing) \VHDL\ synthesis tool. \end{code} \begin{figure} - \centerline{\includegraphics{choice-case}} + \centerline{\includegraphics{choice-case.svg}} \caption{Choice - sumif} \label{img:choice} \end{figure} @@ -766,10 +777,8 @@ by any (optimizing) \VHDL\ synthesis tool. names for existing types, where synonyms are completely interchangeable and renaming constructs need explicit conversions. Therefore, these do not need any particular translation, a synonym or renamed type will just use - the same representation as the original type. The distinction between a - renaming and a synonym does no longer matter in hardware and can be - disregarded in the translation process. For algebraic types, we can make - the following distinction: + the same representation as the original type. For algebraic types, we can + make the following distinctions: \begin{xlist} \item[\bf{Single constructor}] @@ -803,149 +812,103 @@ by any (optimizing) \VHDL\ synthesis tool. currently supported. \end{xlist} - \subsection{Polymorphic functions} - A powerful construct in most functional language is polymorphism. - This means the arguments of a function (and consequentially, values - within the function as well) do not need to have a fixed type. - Haskell supports \emph{parametric polymorphism}, meaning a - function's type can be parameterized with another type. - - As an example of a polymorphic function, consider the following - \hs{append} function's type: - - \comment{TODO: Use vectors instead of lists?} + \subsection{Polymorphism} + A powerful construct in most functional languages is polymorphism, it + allows a function to handle values of different data types in a uniform + way. Haskell supports \emph{parametric polymorphism}~\cite{polymorphism}, + meaning functions can be written without mention of any specific type and + can be used transparently with any number of new types. + As an example of a parametric polymorphic function, consider the type of + the following \hs{append} function, which appends an element to a vector: \begin{code} append :: [a|n] -> a -> [a|n + 1] \end{code} This type is parameterized by \hs{a}, which can contain any type at - all. This means that append can append an element to a list, - regardless of the type of the elements in the list (but the element - added must match the elements in the list, since there is only one - \hs{a}). - - This kind of polymorphism is extremely useful in hardware designs to - make operations work on a vector without knowing exactly what elements - are inside, routing signals without knowing exactly what kinds of - signals these are, or working with a vector without knowing exactly - how long it is. Polymorphism also plays an important role in most - higher order functions, as we will see in the next section. - - The previous example showed unconstrained polymorphism \comment{(TODO: How - is this really called?)}: \hs{a} can have \emph{any} type. - Furthermore,Haskell supports limiting the types of a type parameter to - specific class of types. An example of such a type class is the - \hs{Num} class, which contains all of Haskell's numerical types. - - Now, take the addition operator, which has the following type: - + all. This means that \hs{append} can append an element to a vector, + regardless of the type of the elements in the list (as long as the type of + the value to be added is of the same type as the values in the vector). + This kind of polymorphism is extremely useful in hardware designs to make + operations work on a vector without knowing exactly what elements are + inside, routing signals without knowing exactly what kinds of signals + these are, or working with a vector without knowing exactly how long it + is. Polymorphism also plays an important role in most higher order + functions, as we will see in the next section. + + Another type of polymorphism is \emph{ad-hoc + polymorphism}~\cite{polymorphism}, which refers to polymorphic + functions which can be applied to arguments of different types, but which + behave differently depending on the type of the argument to which they are + applied. In Haskell, ad-hoc polymorphism is achieved through the use of + type classes, where a class definition provides the general interface of a + function, and class instances define the functionality for the specific + types. An example of such a type class is the \hs{Num} class, which + contains all of Haskell's numerical operations. A developer can make use + of this ad-hoc polymorphism by adding a constraint to a parametrically + polymorphic type variable. Such a constraint indicates that the type + variable can only be instantiated to a type whose members supports the + overloaded functions associated with the type class. + + As an example we will take a look at type signature of the function + \hs{sum}, which sums the values in a vector: \begin{code} - (+) :: Num a => a -> a -> a + sum :: Num a => [a|n] -> a \end{code} This type is again parameterized by \hs{a}, but it can only contain - types that are \emph{instances} of the \emph{type class} \hs{Num}. - Our numerical built-in types are also instances of the \hs{Num} + types that are \emph{instances} of the \emph{type class} \hs{Num}, so that + we know that the addition (+) operator is defined for that type. + \CLaSH's built-in numerical types are also instances of the \hs{Num} class, so we can use the addition operator on \hs{SizedWords} as - well as on {SizedInts}. + well as on \hs{SizedInts}. - In \CLaSH, unconstrained polymorphism is completely supported. Any - function defined can have any number of unconstrained type - parameters. The \CLaSH\ compiler will infer the type of every such - argument depending on how the function is applied. There is one - exception to this: The top level function that is translated, can - not have any polymorphic arguments (since it is never applied, so - there is no way to find out the actual types for the type - parameters). + In \CLaSH, parametric polymorphism is completely supported. Any function + defined can have any number of unconstrained type parameters. The \CLaSH\ + compiler will infer the type of every such argument depending on how the + function is applied. There is one exception to this: The top level + function that is translated, can not have any polymorphic arguments (as + they are never applied, so there is no way to find out the actual types + for the type parameters). \CLaSH\ does not support user-defined type classes, but does use some - of the builtin ones for its builtin functions (like \hs{Num} and - \hs{Eq}). + of the built-in type classes for its built-in function, such as: \hs{Num} + for numerical operations, \hs{Eq} for the equality operators, and + \hs{Ord} for the comparison/order operators. - \subsection{Higher order} + \subsection{Higher-order functions \& values} Another powerful abstraction mechanism in functional languages, is - the concept of \emph{higher order functions}, or \emph{functions as + the concept of \emph{higher-order functions}, or \emph{functions as a first class value}. This allows a function to be treated as a value and be passed around, even as the argument of another - function. Let's clarify that with an example: + function. The following example should clarify this concept: \begin{code} - notList xs = map not xs + negVector xs = map not xs \end{code} - This defines a function \hs{notList}, with a single list of booleans - \hs{xs} as an argument, which simply negates all of the booleans in - the list. To do this, it uses the function \hs{map}, which takes - \emph{another function} as its first argument and applies that other - function to each element in the list, returning again a list of the - results. - - As you can see, the \hs{map} function is a higher order function, - since it takes another function as an argument. Also note that - \hs{map} is again a polymorphic function: It does not pose any - constraints on the type of elements in the list passed, other than - that it must be the same as the type of the argument the passed - function accepts. The type of elements in the resulting list is of - course equal to the return type of the function passed (which need - not be the same as the type of elements in the input list). Both of - these can be readily seen from the type of \hs{map}: + The code above defines a function \hs{negVector}, which takes a vector of + booleans, and returns a vector where all the values are negated. It + achieves this by calling the \hs{map} function, and passing it + \emph{another function}, boolean negation, and the vector of booleans, + \hs{xs}. The \hs{map} function applies the negation function to all the + elements in the vector. + + The \hs{map} function is called a higher-order function, since it takes + another function as an argument. Also note that \hs{map} is again a + parametric polymorphic function: It does not pose any constraints on the + type of the vector elements, other than that it must be the same type as + the input type of the function passed to \hs{map}. The element type of the + resulting vector is equal to the return type of the function passed, which + need not necessarily be the same as the element type of the input vector. + All of these characteristics can readily be inferred from the type + signature belonging to \hs{map}: \begin{code} - map :: (a -> b) -> [a] -> [b] + map :: (a -> b) -> [a|n] -> [b|n] \end{code} - - As an example from a common hardware design, let's look at the - equation of a FIR filter. - \begin{equation} - y_t = \sum\nolimits_{i = 0}^{n - 1} {x_{t - i} \cdot h_i } - \end{equation} - - A FIR filter multiplies fixed constants ($h$) with the current and - a few previous input samples ($x$). Each of these multiplications - are summed, to produce the result at time $t$. - - This is easily and directly implemented using higher order - functions. Consider that the vector \hs{hs} contains the FIR - coefficients and the vector \hs{xs} contains the current input sample - in front and older samples behind. How \hs{xs} gets its value will be - show in the next section about state. - - \begin{code} - fir ... = foldl1 (+) (zipwith (*) xs hs) - \end{code} - - Here, the \hs{zipwith} function is very similar to the \hs{map} - function: It takes a function two lists and then applies the - function to each of the elements of the two lists pairwise - (\emph{e.g.}, \hs{zipwith (+) [1, 2] [3, 4]} becomes - \hs{[1 + 3, 2 + 4]}. - - The \hs{foldl1} function takes a function and a single list and applies the - function to the first two elements of the list. It then applies to - function to the result of the first application and the next element - from the list. This continues until the end of the list is reached. - The result of the \hs{foldl1} function is the result of the last - application. - - As you can see, the \hs{zipwith (*)} function is just pairwise - multiplication and the \hs{foldl1 (+)} function is just summation. - - To make the correspondence between the code and the equation even - more obvious, we turn the list of input samples in the equation - around. So, instead of having the the input sample received at time - $t$ in $x_t$, $x_0$ now always stores the current sample, and $x_i$ - stores the $ith$ previous sample. This changes the equation to the - following (Note that this is completely equivalent to the original - equation, just with a different definition of $x$ that better suits - the \hs{x} from the code): - - \begin{equation} - y_t = \sum\nolimits_{i = 0}^{n - 1} {x_i \cdot h_i } - \end{equation} - - So far, only functions have been used as higher order values. In + So far, only functions have been used as higher-order values. In Haskell, there are two more ways to obtain a function-typed value: partial application and lambda abstraction. Partial application means that a function that takes multiple arguments can be applied @@ -959,17 +922,15 @@ by any (optimizing) \VHDL\ synthesis tool. Here, the expression \hs{(+) 1} is the partial application of the plus operator to the value \hs{1}, which is again a function that - adds one to its argument. - - A labmda expression allows one to introduce an anonymous function - in any expression. Consider the following expression, which again - adds one to every element of a list: + adds one to its argument. A lambda expression allows one to introduce an + anonymous function in any expression. Consider the following expression, + which again adds one to every element of a vector: \begin{code} map (\x -> x + 1) xs \end{code} - Finally, higher order arguments are not limited to just builtin + Finally, higher order arguments are not limited to just built-in functions, but any function defined in \CLaSH\ can have function arguments. This allows the hardware designer to use a powerful abstraction mechanism in his designs and have an optimal amount of @@ -993,41 +954,162 @@ by any (optimizing) \VHDL\ synthesis tool. \item when the function is called, it should not have observable side-effects. \end{inparaenum} - This purity property is important for functional languages, since it - enables all kinds of mathematical reasoning that could not be guaranteed - correct for impure functions. Pure functions are as such a perfect match - for a combinatorial circuit, where the output solely depends on the - inputs. When a circuit has state however, it can no longer be simply - described by a pure function. Simply removing the purity property is not a - valid option, as the language would then lose many of it mathematical - properties. In an effort to include the concept of state in pure + % This purity property is important for functional languages, since it + % enables all kinds of mathematical reasoning that could not be guaranteed + % correct for impure functions. + Pure functions are as such a perfect match or a combinatorial circuit, + where the output solely depends on the inputs. When a circuit has state + however, it can no longer be simply described by a pure function. + % Simply removing the purity property is not a valid option, as the + % language would then lose many of it mathematical properties. + In an effort to include the concept of state in pure functions, the current value of the state is made an argument of the - function; the updated state becomes part of the result. A simple example - is adding an accumulator register to the earlier multiply-accumulate - circuit, of which the resulting netlist can be seen in + function; the updated state becomes part of the result. In this sense the + descriptions made in \CLaSH are the describing the combinatorial parts of + a mealy machine. + + A simple example is adding an accumulator register to the earlier + multiply-accumulate circuit, of which the resulting netlist can be seen in \Cref{img:mac-state}: \begin{code} - macS a b (State c) = (State c', outp) + macS (State c) a b = (State c', outp) where outp = mac a b c c' = outp \end{code} \begin{figure} - \centerline{\includegraphics{mac-state}} + \centerline{\includegraphics{mac-state.svg}} \caption{Stateful Multiply-Accumulate} \label{img:mac-state} \end{figure} - This approach makes the state of a circuit very explicit: which variables - are part of the state is completely determined by the type signature. This - approach to state is well suited to be used in combination with the - existing code and language features, such as all the choice constructs, as - state values are just normal values. + The \hs{State} keyword indicates which arguments are part of the current + state, and what part of the output is part of the updated state. This + aspect will also reflected in the type signature of the function. + Abstracting the state of a circuit in this way makes it very explicit: + which variables are part of the state is completely determined by the + type signature. This approach to state is well suited to be used in + combination with the existing code and language features, such as all the + choice constructs, as state values are just normal values. We can simulate + stateful descriptions using the recursive \hs{run} function: + + \begin{code} + run f s (i:inps) = o : (run f s' inps) + where + (s', o) = f s i + \end{code} + + The \hs{run} function maps a list of inputs over the function that a + developer wants to simulate, passing the state to each new iteration. Each + value in the input list corresponds to exactly one cycle of the (implicit) + clock. The result of the simulation is a list of outputs for every clock + cycle. As both the \hs{run} function and the hardware description are + plain hardware, the complete simulation can be compiled by an optimizing + Haskell compiler. + \section{\CLaSH\ prototype} -foo\par bar +The \CLaSH language as presented above can be translated to \VHDL using +the prototype \CLaSH compiler. This compiler allows experimentation with +the \CLaSH language and allows for running \CLaSH designs on actual FPGA +hardware. + +\comment{Add clash pipeline image} +The prototype heavily uses \GHC, the Glasgow Haskell Compiler. Figure +TODO shows the \CLaSH compiler pipeline. As you can see, the frontend +is completely reused from \GHC, which allows the \CLaSH prototype to +support most of the Haskell Language. The \GHC frontend produces the +program in the \emph{Core} format, which is a very small, functional, +typed language which is relatively easy to process. + +The second step in the compilation process is \emph{normalization}. This +step runs a number of \emph{meaning preserving} transformations on the +Core program, to bring it into a \emph{normal form}. This normal form +has a number of restrictions that make the program similar to hardware. +In particular, a program in normal form no longer has any polymorphism +or higher order functions. + +The final step is a simple translation to \VHDL. + +\section{Use cases} +As an example of a common hardware design where the use of higher-order +functions leads to a very natural description is a FIR filter, which is +basically the dot-product of two vectors: + +\begin{equation} +y_t = \sum\nolimits_{i = 0}^{n - 1} {x_{t - i} \cdot h_i } +\end{equation} + +A FIR filter multiplies fixed constants ($h$) with the current +and a few previous input samples ($x$). Each of these multiplications +are summed, to produce the result at time $t$. The equation of a FIR +filter is indeed equivalent to the equation of the dot-product, which is +shown below: + +\begin{equation} +\mathbf{x}\bullet\mathbf{y} = \sum\nolimits_{i = 0}^{n - 1} {x_i \cdot y_i } +\end{equation} + +We can easily and directly implement the equation for the dot-product +using higher-order functions: + +\begin{code} +xs *+* ys = foldl1 (+) (zipWith (*) xs hs) +\end{code} + +The \hs{zipWith} function is very similar to the \hs{map} function seen +earlier: It takes a function, two vectors, and then applies the function to +each of the elements in the two vectors pairwise (\emph{e.g.}, \hs{zipWith (*) +[1, 2] [3, 4]} becomes \hs{[1 * 3, 2 * 4]} $\equiv$ \hs{[3,8]}). + +The \hs{foldl1} function takes a function, a single vector, and applies +the function to the first two elements of the vector. It then applies the +function to the result of the first application and the next element from +the vector. This continues until the end of the vector is reached. The +result of the \hs{foldl1} function is the result of the last application. +As you can see, the \hs{zipWith (*)} function is just pairwise +multiplication and the \hs{foldl1 (+)} function is just summation. + +Returning to the actual FIR filter, we will slightly change the +equation belong to it, so as to make the translation to code more obvious. +What we will do is change the definition of the vector of input samples. +So, instead of having the input sample received at time +$t$ stored in $x_t$, $x_0$ now always stores the current sample, and $x_i$ +stores the $ith$ previous sample. This changes the equation to the +following (Note that this is completely equivalent to the original +equation, just with a different definition of $x$ that will better suit +the transformation to code): + +\begin{equation} +y_t = \sum\nolimits_{i = 0}^{n - 1} {x_i \cdot h_i } +\end{equation} + +Consider that the vector \hs{hs} contains the FIR coefficients and the +vector \hs{xs} contains the current input sample in front and older +samples behind. The function that shifts the input samples is shown below: + +\begin{code} +x >> xs = x +> tail xs +\end{code} + +Where the \hs{tail} function returns all but the first element of a +vector, and the concatenate operator ($\succ$) adds a new element to the +left of a vector. The complete definition of the FIR filter then becomes: + +\begin{code} +fir (State (xs,hs)) x = (State (x >> xs,hs), xs *+* hs) +\end{code} + +The resulting netlist of a 4-taps FIR filter based on the above definition +is depicted in \Cref{img:4tapfir}. + +\begin{figure} +\centerline{\includegraphics{4tapfir.svg}} +\caption{4-taps FIR Filter} +\label{img:4tapfir} +\end{figure} \section{Related work} Many functional hardware description languages have been developed over the @@ -1035,22 +1117,34 @@ years. Early work includes such languages as $\mu$\acro{FP}~\cite{muFP}, an extension of Backus' \acro{FP} language to synchronous streams, designed particularly for describing and reasoning about regular circuits. The Ruby~\cite{Ruby} language uses relations, instead of functions, to describe -circuits, and has a particular focus on layout. \acro{HML}~\cite{HML2} is a -hardware modeling language based on the strict functional language -\acro{ML}, and has support for polymorphic types and higher-order functions. -Published work suggests that there is no direct simulation support for -\acro{HML}, and that the translation to \VHDL\ is only partial. +circuits, and has a particular focus on layout. + +\acro{HML}~\cite{HML2} is a hardware modeling language based on the strict +functional language \acro{ML}, and has support for polymorphic types and +higher-order functions. Published work suggests that there is no direct +simulation support for \acro{HML}, but that a description in \acro{HML} has to +be translated to \VHDL\ and that the translated description can than be +simulated in a \VHDL\ simulator. Also not all of the mentioned language +features of \acro{HML} could be translated to hardware. The \CLaSH\ compiler +on the other hand can correctly translate all of the language constructs +mentioned in this paper to a netlist format. Like this work, many functional hardware description languages have some sort of foundation in the functional programming language Haskell. Hawk~\cite{Hawk1} uses Haskell to describe system-level executable specifications used to model the behavior of superscalar microprocessors. Hawk specifications can be simulated, but there seems to be no support for -automated circuit synthesis. The ForSyDe~\cite{ForSyDe2} system uses Haskell -to specify abstract system models, which can (manually) be transformed into an -implementation model using semantic preserving transformations. ForSyDe has -several simulation and synthesis backends, though synthesis is restricted to -the synchronous subset of the ForSyDe language. +automated circuit synthesis. + +The ForSyDe~\cite{ForSyDe2} system uses Haskell to specify abstract system +models, which can (manually) be transformed into an implementation model using +semantic preserving transformations. A designer can model systems using +heterogeneous models of computation, which include continuous time, +synchronous and untimed models of computation. Using so-called domain +interfaces a designer can simulate electronic systems which have both analog +as digital parts. ForSyDe has several simulation and synthesis backends, +though synthesis is restricted to the synchronous subset of the ForSyDe +language. Unlike \CLaSH\ there is no support for the automated synthesis of description that contain polymorphism or higher-order functions. Lava~\cite{Lava} is a hardware description language that focuses on the structural representation of hardware. Besides support for simulation and @@ -1059,12 +1153,13 @@ tools for formal verification. Lava descriptions are actually circuit generators when viewed from a synthesis viewpoint, in that the language elements of Haskell, such as choice, can be used to guide the circuit generation. If a developer wants to insert a choice element inside an actual -circuit he will have to specify this explicitly as a component. In this -respect \CLaSH\ differs from Lava, in that all the choice elements, such as -case-statements and pattern matching, are synthesized to choice elements in the -eventual circuit. As such, richer control structures can both be specified and -synthesized in \CLaSH\ compared to any of the languages mentioned in this -section. +circuit he will have to specify this explicitly as a component. + +In this respect \CLaSH\ differs from Lava, in that all the choice elements, +such as case-statements and pattern matching, are synthesized to choice +elements in the eventual circuit. As such, richer control structures can both +be specified and synthesized in \CLaSH\ compared to any of the languages +mentioned in this section. The merits of polymorphic typing, combined with higher-order functions, are now also recognized in the `main-stream' hardware description languages,