Process jan's comments on higher-order functions
[matthijs/master-project/dsd-paper.git] / cλash.lhs
index c4a281f53f9d3e481545c29f745b401d9c30428e..c690e8ebc148dccd999bf6da2ad4ec376d07d5d2 100644 (file)
 % Macro for certain acronyms in small caps. Doesn't work with the
 % default font, though (it contains no smallcaps it seems).
 \def\acro#1{{\small{#1}}}
+\def\acrotiny#1{{\scriptsize{#1}}}
 \def\VHDL{\acro{VHDL}}
 \def\GHC{\acro{GHC}}
 \def\CLaSH{{\small{C}}$\lambda$a{\small{SH}}}
+\def\CLaSHtiny{{\scriptsize{C}}$\lambda$a{\scriptsize{SH}}}
 
 % Macro for pretty printing haskell snippets. Just monospaced for now, perhaps
 % we'll get something more complex later on.
 % author names and affiliations
 % use a multiple column layout for up to three different
 % affiliations
-\author{\IEEEauthorblockN{Christiaan P.R. Baaij, Matthijs Kooijman, Jan Kuper, Marco E.T. Gerards, Bert Molenkamp, Sabih H. Gerez}
-\IEEEauthorblockA{University of Twente, Department of EEMCS\\
+\author{\IEEEauthorblockN{Christiaan P.R. Baaij, Matthijs Kooijman, Jan Kuper, Marco E.T. Gerards}%, Bert Molenkamp, Sabih H. Gerez}
+\IEEEauthorblockA{%Computer Architecture for Embedded Systems (CAES)\\ 
+Department of EEMCS, University of Twente\\
 P.O. Box 217, 7500 AE, Enschede, The Netherlands\\
 c.p.r.baaij@@utwente.nl, matthijs@@stdin.nl, j.kuper@@utwente.nl}}
 % \and
@@ -479,7 +482,7 @@ traditional hardware description languages.
 
 
 \section{Introduction}
-Hardware description languages has allowed the productivity of hardware 
+Hardware description languages have allowed the productivity of hardware 
 engineers to keep pace with the development of chip technology. Standard 
 Hardware description languages, like \VHDL~\cite{VHDL2008} and 
 Verilog~\cite{Verilog}, allowed an engineer to describe circuits using a 
@@ -504,7 +507,7 @@ means that a developer is given a library of Haskell~\cite{Haskell} functions
 and types that together form the language primitives of the domain specific 
 language. As a result of how the signals are modeled and abstracted, the 
 functions used to describe a circuit also build a large domain-specific 
-datatype (hidden from the designer) which can be further processed by an 
+datatype (hidden from the designer) which can then be processed further by an 
 embedded compiler. This compiler actually runs in the same environment as the 
 description; as a result compile-time and run-time become hard to define, as 
 the embedded compiler is usually compiled by the same Haskell compiler as the 
@@ -516,7 +519,7 @@ itself for the purpose of describing hardware. By taking this approach, we can
 capture certain language constructs, such as Haskell's choice elements 
 (if-constructs, case-constructs, pattern matching, etc.), which are not 
 available in the functional hardware description languages that are embedded 
-in Haskell as a domain specific languages. As far as the authors know, such 
+in Haskell as a domain specific language. As far as the authors know, such 
 extensive support for choice-elements is new in the domain of functional 
 hardware description languages. As the hardware descriptions are plain Haskell 
 functions, these descriptions can be compiled for simulation using an 
@@ -525,18 +528,29 @@ optimizing Haskell compiler such as the Glasgow Haskell Compiler (\GHC)~\cite{gh
 Where descriptions in a conventional hardware description language have an 
 explicit clock for the purpose state and synchronicity, the clock is implied 
 in this research. A developer describes the behavior of the hardware between 
-clock cycles, as such, only synchronous systems can be described. Many 
-functional hardware description model signals as a stream of all values over 
-time; state is then modeled as a delay on this stream of values. The approach 
-taken in this research is to make the current state of a circuit part of the 
-input of the function and the updated state part of the output.
+clock cycles. Many functional hardware description model signals as a stream 
+of all values over time; state is then modeled as a delay on this stream of 
+values. The approach taken in this research is to make the current state of a 
+circuit part of the input of the function and the updated state part of the 
+output. The current abstraction of state and time limits the descriptions to 
+synchronous hardware, there however is room within the language to eventually 
+add a different abstraction mechanism that will allow for the modeling of 
+asynchronous systems.
 
 Like the standard hardware description languages, descriptions made in a 
 functional hardware description language must eventually be converted into a 
-netlist. This research also features a prototype translator called \CLaSH\ 
-(pronounced: clash), which converts the Haskell code to equivalently behaving 
-synthesizable \VHDL\ code, ready to be converted to an actual netlist format 
-by an (optimizing) \VHDL\ synthesis tool.
+netlist. This research also features a prototype translator, which has the 
+same name as the language: \CLaSH\footnote{\CLaSHtiny: \acrotiny{CAES} 
+Language for Synchronous Hardware} (pronounced: clash). This compiler converts 
+the Haskell code to equivalently behaving synthesizable \VHDL\ code, ready to 
+be converted to an actual netlist format by an (optimizing) \VHDL\ synthesis 
+tool.
+
+Besides trivial circuits such as variants of both the FIR filter and the 
+simple CPU shown in \Cref{sec:usecases}, the \CLaSH\ compiler has also been 
+shown to work for non-trivial descriptions. \CLaSH\ has been able to 
+successfully translate the functional description of a streaming reduction 
+circuit~\cite{reductioncircuit} for floating point numbers.
 
 \section{Hardware description in Haskell}
 
@@ -551,18 +565,19 @@ by an (optimizing) \VHDL\ synthesis tool.
             and
       \item function applications are translated to component instantiations.
     \end{inparaenum} 
-    The output port can have a complex type (such as a tuple), so having just 
-    a single output port does not pose any limitation. The arguments of a 
-    function applications are assigned to a signal, which are then mapped to
+    The output port can have a structured type (such as a tuple), so having 
+    just a single output port does not pose any limitation. The arguments of a 
+    function application are assigned to signals, which are then mapped to
     the corresponding input ports of the component. The output port of the 
     function is also mapped to a signal, which is used as the result of the 
     application itself.
 
     Since every top level function generates its own component, the
     hierarchy of function calls is reflected in the final netlist,% aswell, 
-    creating a hierarchical description of the hardware. This separation in 
-    different components makes the resulting \VHDL\ output easier to read and 
-    debug.
+    creating a hierarchical description of the hardware. The separation in 
+    different components makes it easier for a developer to understand and 
+    possibly hand-optimize the resulting \VHDL\ output of the \CLaSH\ 
+    compiler.
 
     As an example we can see the netlist of the |mac| function in
     \Cref{img:mac-comb}; the |mac| function applies both the |mul| and |add|
@@ -578,7 +593,7 @@ by an (optimizing) \VHDL\ synthesis tool.
     \label{img:mac-comb}
     \end{figure}
     
-    The result of using a complex input type can be seen in 
+    The result of using a structural input type can be seen in 
     \cref{img:mac-comb-nocurry} where the |mac| function now uses a single
     input tuple for the |a|, |b|, and |c| arguments:
     
@@ -595,7 +610,7 @@ by an (optimizing) \VHDL\ synthesis tool.
   \subsection{Choice}
     In Haskell, choice can be achieved by a large set of language constructs, 
     consisting of: \hs{case} constructs, \hs{if-then-else} constructs, 
-    pattern matching, and guards. The easiest of these are the \hs{case} 
+    pattern matching, and guards. The most general of these are the \hs{case} 
     constructs (\hs{if} expressions can be very directly translated to 
     \hs{case} expressions). A \hs{case} construct is translated to a 
     multiplexer, where the control value is linked to the selection port and 
@@ -605,17 +620,27 @@ by an (optimizing) \VHDL\ synthesis tool.
     % assignment in \VHDL, where the conditions use equality comparisons 
     % against the constructors in the \hs{case} expressions. 
     We can see two versions of a contrived example below, the first 
-    using a \hs{case} construct and the other using a \hs{if-then-else} 
-    constructs, in the code below. 
+    using a \hs{case} construct and the other using an \hs{if-then-else} 
+    construct, in the code below. The examples sums two values when they are 
+    equal or non-equal (depending on the given predicate, the \hs{pred} 
+    variable) and returns 0 otherwise. The \hs{pred} variable has the 
+    following, user-defined, enumeration datatype:
     
     \begin{code}
+    data Pred = Equiv | NotEquiv
+    \end{code}
+
+    The naive netlist corresponding to both versions of the example is 
+    depicted in \Cref{img:choice}.
+
+    \begin{code}    
     sumif pred a b = case pred of
-      Eq ->   case a == b of
-        True    -> a + b
-        False   -> 0
-      Neq ->  case a != b of
-        True    -> a + b
-        False   -> 0
+      Equiv -> case a == b of
+        True      -> a + b
+        False     -> 0
+      NotEquiv  -> case a != b of
+        True      -> a + b
+        False     -> 0
     \end{code}
 
     \begin{code}
@@ -631,28 +656,30 @@ by an (optimizing) \VHDL\ synthesis tool.
     \caption{Choice - sumif}
     \label{img:choice}
     \end{figure}
-    
-    The example sums two values when they are equal or non-equal (depending on 
-    the predicate given) and returns 0 otherwise. Both versions of the example 
-    roughly correspond to the same netlist, which is depicted in 
-    \Cref{img:choice}.
 
-    A slightly more complex (but very powerful) form of choice is pattern 
+    A user-friendly and also very powerful form of choice is pattern 
     matching. A function can be defined in multiple clauses, where each clause 
-    specifies a pattern. When the arguments match the pattern, the 
+    corresponds to a pattern. When an argument matches a pattern, the 
     corresponding clause will be used. Expressions can also contain guards, 
-    where the expression is only executed if the guard evaluates to true. Like 
+    where the expression is only executed if the guard evaluates to true, and 
+    continues with the next clause if the guard evaluates to false. Like 
     \hs{if-then-else} constructs, pattern matching and guards have a 
     (straightforward) translation to \hs{case} constructs and can as such be 
     mapped to multiplexers. A third version of the earlier example, using both 
-    pattern matching and guards, can be seen below. The version using pattern 
-    matching and guards also has roughly the same netlist representation 
-    (\Cref{img:choice}) as the earlier two versions of the example.
+    pattern matching and guards, can be seen below. The guard is the 
+    expression that follows the vertical bar (\hs{|}) and precedes the 
+    assignment operator (\hs{=}). The \hs{otherwise} guards always evaluate to 
+    \hs{true}.
+    
+    The version using pattern matching and guards corresponds to the same 
+    naive netlist representation (\Cref{img:choice}) as the earlier two 
+    versions of the example.
     
     \begin{code}
-    sumif Eq a b    | a == b = a + b
-    sumif Neq a b   | a != b = a + b
-    sumif _ _ _     = 0
+    sumif Eq a b    | a == b      = a + b
+                    | otherwise   = 0
+    sumif Neq a b   | a != b      = a + b
+                    | otherwise   = 0
     \end{code}
 
     % \begin{figure}
@@ -664,8 +691,8 @@ by an (optimizing) \VHDL\ synthesis tool.
   \subsection{Types}
     Haskell is a statically-typed language, meaning that the type of a 
     variable or function is determined at compile-time. Not all of Haskell's 
-    typing constructs have a clear translation to hardware, as such this 
-    section will only deal with the types that do have a clear correspondence 
+    typing constructs have a clear translation to hardware, this section will 
+    therefor only deal with the types that do have a clear correspondence 
     to hardware. The translatable types are divided into two categories: 
     \emph{built-in} types and \emph{user-defined} types. Built-in types are 
     those types for which a direct translation is defined within the \CLaSH\ 
@@ -690,16 +717,16 @@ by an (optimizing) \VHDL\ synthesis tool.
     % using translation rules that are discussed later on.
 
   \subsubsection{Built-in types}
-    The following types have direct translation defined within the \CLaSH\
+    The following types have direct translations defined within the \CLaSH\
     compiler:
     \begin{xlist}
       \item[\bf{Bit}]
-        This is the most basic type available. It can have two values:
-        \hs{Low} and \hs{High}. 
+        the most basic type available. It can have two values:
+        \hs{Low} or \hs{High}. 
         % It is mapped directly onto the \texttt{std\_logic} \VHDL\ type. 
       \item[\bf{Bool}]
-        This is a basic logic type. It can have two values: \hs{True}
-        and \hs{False}. 
+        this is a basic logic type. It can have two values: \hs{True}
+        or \hs{False}. 
         % It is translated to \texttt{std\_logic} exactly like the \hs{Bit} 
         % type (where a value of \hs{True} corresponds to a value of 
         % \hs{High}). 
@@ -707,7 +734,7 @@ by an (optimizing) \VHDL\ synthesis tool.
         \hs{if-then-else} construct, which requires a \hs{Bool} value for 
         the condition.
       \item[\bf{SizedWord}, \bf{SizedInt}]
-        These are types to represent integers. A \hs{SizedWord} is unsigned,
+        these are types to represent integers. A \hs{SizedWord} is unsigned,
         while a \hs{SizedInt} is signed. Both are parametrizable in their 
         size. 
         % , so you can define an unsigned word of 32 bits wide as follows:
@@ -723,7 +750,7 @@ by an (optimizing) \VHDL\ synthesis tool.
         % types are translated to the \VHDL\ \texttt{unsigned} and 
         % \texttt{signed} respectively.
       \item[\bf{Vector}]
-        This is a vector type that can contain elements of any other type and
+        this is a vector type that can contain elements of any other type and
         has a fixed length. The \hs{Vector} type constructor takes two type 
         arguments: the length of the vector and the type of the elements 
         contained in it. The short-hand notation used for the vector type in  
@@ -743,7 +770,7 @@ by an (optimizing) \VHDL\ synthesis tool.
         % \hs{RegisterState} type is a vector of 8 32-bit words. A fixed size 
         % vector is translated to a \VHDL\ array type.
       \item[\bf{Index}]
-        This is another type to describe integers, but unlike the previous
+        this is another type to describe integers, but unlike the previous
         two it has no specific bit-width, but an upper bound. This means that
         its range is not limited to powers of two, but can be any number.
         An \hs{Index} only has an upper bound, its lower bound is
@@ -770,14 +797,14 @@ by an (optimizing) \VHDL\ synthesis tool.
     data-types with the \hs{data} keyword, type synonyms with the \hs{type}
     keyword and datatype renaming constructs with the \hs{newtype} keyword. 
     \GHC\ offers a few more advanced ways to introduce types (type families,
-    existential typing, {\small{GADT}}s, etc.) which are not standard Haskell. 
+    existential typing, {\acro{GADT}}s, etc.) which are not standard Haskell. 
     As it is currently unclear how these advanced type constructs correspond 
-    with hardware, they are for now unsupported by the \CLaSH\ compiler
+    to hardware, they are for now unsupported by the \CLaSH\ compiler.
 
     Only an algebraic datatype declaration actually introduces a
-    completely new type. Type synonyms and renaming constructs only define new 
+    completely new type. Type synonyms and type renaming only define new 
     names for existing types, where synonyms are completely interchangeable 
-    and renaming constructs need explicit conversions. Therefore, these do not 
+    and type renaming requires explicit conversions. Therefore, these do not 
     need any particular translation, a synonym or renamed type will just use 
     the same representation as the original type. For algebraic types, we can 
     make the following distinctions: 
@@ -798,9 +825,10 @@ by an (optimizing) \VHDL\ synthesis tool.
         Algebraic datatypes with multiple constructors, but without any
         fields are essentially a way to get an enumeration-like type
         containing alternatives. Note that Haskell's \hs{Bool} type is also 
-        defined as an enumeration type, but we have a fixed translation for 
-        that. An example of such an enum type is the type that represents the
-        colors in a traffic light:
+        defined as an enumeration type, but that there a fixed translation for 
+        that type within the \CLaSH\ compiler. An example of such an 
+        enumeration type is the type that represents the colors in a traffic 
+        light:
         \begin{code}
         data TrafficLight = Red | Orange | Green
         \end{code}
@@ -810,19 +838,21 @@ by an (optimizing) \VHDL\ synthesis tool.
         % value.
       \item[\bf{Multiple constructors with fields}]
         Algebraic datatypes with multiple constructors, where at least
-        one of these constructors has one or more fields are not
-        currently supported.
+        one of these constructors has one or more fields are currently not 
+        supported.
     \end{xlist}
 
   \subsection{Polymorphism}
-    A powerful construct in most functional languages is polymorphism, it 
-    allows a function to handle values of different data types in a uniform 
-    way. Haskell supports \emph{parametric polymorphism}~\cite{polymorphism}, 
-    meaning functions can be written without mention of any specific type and 
-    can be used transparently with any number of new types.
+    A powerful feature of most (functional) programming languages is 
+    polymorphism, it allows a function to handle values of different data 
+    types in a uniform way. Haskell supports \emph{parametric 
+    polymorphism}~\cite{polymorphism}, meaning functions can be written 
+    without mention of any specific type and can be used transparently with 
+    any number of new types.
 
     As an example of a parametric polymorphic function, consider the type of 
     the following \hs{append} function, which appends an element to a vector:
+    
     \begin{code}
     append :: [a|n] -> a -> [a|n + 1]
     \end{code}
@@ -846,7 +876,7 @@ by an (optimizing) \VHDL\ synthesis tool.
     type classes, where a class definition provides the general interface of a 
     function, and class instances define the functionality for the specific 
     types. An example of such a type class is the \hs{Num} class, which 
-    contains all of Haskell's numerical operations. A developer can make use 
+    contains all of Haskell's numerical operations. A designer can make use 
     of this ad-hoc polymorphism by adding a constraint to a parametrically 
     polymorphic type variable. Such a constraint indicates that the type 
     variable can only be instantiated to a type whose members supports the 
@@ -868,14 +898,15 @@ by an (optimizing) \VHDL\ synthesis tool.
     In \CLaSH, parametric polymorphism is completely supported. Any function 
     defined can have any number of unconstrained type parameters. The \CLaSH\ 
     compiler will infer the type of every such argument depending on how the 
-    function is applied. There is one exception to this: The top level 
-    function that is translated, can not have any polymorphic arguments (as 
-    they are never applied, so there is no way to find out the actual types 
-    for the type parameters).
+    function is applied. There is however one constraint: the top level 
+    function that is being translated can not have any polymorphic arguments. 
+    The arguments can not be polymorphic as they are never applied and 
+    consequently there is no way to determine the actual types for the type 
+    parameters.
 
     \CLaSH\ does not support user-defined type classes, but does use some
-    of the built-in type classes for its built-in function, such as: \hs{Num} 
-    for numerical operations, \hs{Eq} for the equality operators, and
+    of the standard Haskell type classes for its built-in function, such as: 
+    \hs{Num} for numerical operations, \hs{Eq} for the equality operators, and
     \hs{Ord} for the comparison/order operators.
 
   \subsection{Higher-order functions \& values}
@@ -886,19 +917,19 @@ by an (optimizing) \VHDL\ synthesis tool.
     function. The following example should clarify this concept:
     
     \begin{code}
-    negVector xs = map not xs
+    negateVector xs = map not xs
     \end{code}
 
-    The code above defines a function \hs{negVector}, which takes a vector of
-    booleans, and returns a vector where all the values are negated. It 
-    achieves this by calling the \hs{map} function, and passing it 
+    The code above defines the \hs{negateVector} function, which takes a 
+    vector of booleans, \hs{xs}, and returns a vector where all the values are 
+    negated. It achieves this by calling the \hs{map} function, and passing it 
     \emph{another function}, boolean negation, and the vector of booleans, 
     \hs{xs}. The \hs{map} function applies the negation function to all the 
     elements in the vector.
 
     The \hs{map} function is called a higher-order function, since it takes 
     another function as an argument. Also note that \hs{map} is again a 
-    parametric polymorphic function: It does not pose any constraints on the 
+    parametric polymorphic function: it does not pose any constraints on the 
     type of the vector elements, other than that it must be the same type as 
     the input type of the function passed to \hs{map}. The element type of the 
     resulting vector is equal to the return type of the function passed, which 
@@ -933,12 +964,14 @@ by an (optimizing) \VHDL\ synthesis tool.
     \end{code}
 
     Finally, higher order arguments are not limited to just built-in
-    functions, but any function defined in \CLaSH\ can have function
+    functions, but any function defined by a developer can have function
     arguments. This allows the hardware designer to use a powerful
     abstraction mechanism in his designs and have an optimal amount of
-    code reuse.
+    code reuse. The only exception is again the top-level function: if a 
+    function-typed argument is not applied with an actual function, no 
+    hardware can be generated.    
 
-    \comment{TODO: Describe ALU example (no code)}
+    \comment{TODO: Describe ALU example (no code)}
 
   \subsection{State}
     A very important concept in hardware it the concept of state. In a 
@@ -1008,14 +1041,40 @@ by an (optimizing) \VHDL\ synthesis tool.
     value in the input list corresponds to exactly one cycle of the (implicit) 
     clock. The result of the simulation is a list of outputs for every clock
     cycle. As both the \hs{run} function and the hardware description are 
-    plain hardware, the complete simulation can be compiled by an optimizing
+    plain Haskell, the complete simulation can be compiled by an optimizing
     Haskell compiler.
     
 \section{\CLaSH\ prototype}
 
-foo\par bar
+The \CLaSH\ language as presented above can be translated to \VHDL\ using
+the prototype \CLaSH\ compiler. This compiler allows experimentation with
+the \CLaSH\ language and allows for running \CLaSH\ designs on actual FPGA
+hardware.
+
+\begin{figure}
+\centerline{\includegraphics{compilerpipeline.svg}}
+\caption{\CLaSHtiny\ compiler pipeline}
+\label{img:compilerpipeline}
+\end{figure}
+
+The prototype heavily uses \GHC, the Glasgow Haskell Compiler. 
+\Cref{img:compilerpipeline} shows the \CLaSH\ compiler pipeline. As you can 
+see, the front-end is completely reused from \GHC, which allows the \CLaSH\ 
+prototype to support most of the Haskell Language. The \GHC\ front-end 
+produces the program in the \emph{Core} format, which is a very small, 
+functional, typed language which is relatively easy to process.
+
+The second step in the compilation process is \emph{normalization}. This
+step runs a number of \emph{meaning preserving} transformations on the
+Core program, to bring it into a \emph{normal form}. This normal form
+has a number of restrictions that make the program similar to hardware.
+In particular, a program in normal form no longer has any polymorphism
+or higher order functions.
+
+The final step is a simple translation to \VHDL.
 
 \section{Use cases}
+\label{sec:usecases}
 As an example of a common hardware design where the use of higher-order
 functions leads to a very natural description is a FIR filter, which is 
 basically the dot-product of two vectors:
@@ -1089,7 +1148,7 @@ is depicted in \Cref{img:4tapfir}.
 
 \begin{figure}
 \centerline{\includegraphics{4tapfir.svg}}
-\caption{4-taps FIR Filter}
+\caption{4-taps \acrotiny{FIR} Filter}
 \label{img:4tapfir}
 \end{figure}
 
@@ -1124,9 +1183,11 @@ semantic preserving transformations. A designer can model systems using
 heterogeneous models of computation, which include continuous time, 
 synchronous and untimed models of computation. Using so-called domain 
 interfaces a designer can simulate electronic systems which have both analog 
-as digital parts. ForSyDe has several simulation and  synthesis backends, 
-though synthesis is restricted to the synchronous subset of the ForSyDe 
-language. Unlike \CLaSH\ there is no support for the automated synthesis of description that contain polymorphism or higher-order functions.
+as digital parts. ForSyDe has several backends including simulation and 
+automated synthesis, though automated synthesis is restricted to the 
+synchronous model of computation within ForSyDe. Unlike \CLaSH\ there is no 
+support for the automated synthesis of descriptions that contain polymorphism 
+or higher-order functions.
 
 Lava~\cite{Lava} is a hardware description language that focuses on the 
 structural representation of hardware. Besides support for simulation and 
@@ -1275,7 +1336,7 @@ The authors would like to thank...
 % http://www.michaelshell.org/tex/ieeetran/bibtex/
 \bibliographystyle{IEEEtran}
 % argument is your BibTeX string definitions and bibliography database(s)
-\bibliography{IEEEabrv,clash.bib}
+\bibliography{clash}
 %
 % <OR> manually copy in the resultant .bbl file
 % set second argument of \begin to the number of references