b5e074dcc6e0980349814d0db84ca0eb1f27b379
[matthijs/master-project/dsd-paper.git] / cλash.lhs
1
2 %% bare_conf.tex
3 %% V1.3
4 %% 2007/01/11
5 %% by Michael Shell
6 %% See:
7 %% http://www.michaelshell.org/
8 %% for current contact information.
9 %%
10 %% This is a skeleton file demonstrating the use of IEEEtran.cls
11 %% (requires IEEEtran.cls version 1.7 or later) with an IEEE conference paper.
12 %%
13 %% Support sites:
14 %% http://www.michaelshell.org/tex/ieeetran/
15 %% http://www.ctan.org/tex-archive/macros/latex/contrib/IEEEtran/
16 %% and
17 %% http://www.ieee.org/
18
19 %%*************************************************************************
20 %% Legal Notice:
21 %% This code is offered as-is without any warranty either expressed or
22 %% implied; without even the implied warranty of MERCHANTABILITY or
23 %% FITNESS FOR A PARTICULAR PURPOSE! 
24 %% User assumes all risk.
25 %% In no event shall IEEE or any contributor to this code be liable for
26 %% any damages or losses, including, but not limited to, incidental,
27 %% consequential, or any other damages, resulting from the use or misuse
28 %% of any information contained here.
29 %%
30 %% All comments are the opinions of their respective authors and are not
31 %% necessarily endorsed by the IEEE.
32 %%
33 %% This work is distributed under the LaTeX Project Public License (LPPL)
34 %% ( http://www.latex-project.org/ ) version 1.3, and may be freely used,
35 %% distributed and modified. A copy of the LPPL, version 1.3, is included
36 %% in the base LaTeX documentation of all distributions of LaTeX released
37 %% 2003/12/01 or later.
38 %% Retain all contribution notices and credits.
39 %% ** Modified files should be clearly indicated as such, including  **
40 %% ** renaming them and changing author support contact information. **
41 %%
42 %% File list of work: IEEEtran.cls, IEEEtran_HOWTO.pdf, bare_adv.tex,
43 %%                    bare_conf.tex, bare_jrnl.tex, bare_jrnl_compsoc.tex
44 %%*************************************************************************
45
46 % *** Authors should verify (and, if needed, correct) their LaTeX system  ***
47 % *** with the testflow diagnostic prior to trusting their LaTeX platform ***
48 % *** with production work. IEEE's font choices can trigger bugs that do  ***
49 % *** not appear when using other class files.                            ***
50 % The testflow support page is at:
51 % http://www.michaelshell.org/tex/testflow/
52
53
54
55 % Note that the a4paper option is mainly intended so that authors in
56 % countries using A4 can easily print to A4 and see how their papers will
57 % look in print - the typesetting of the document will not typically be
58 % affected with changes in paper size (but the bottom and side margins will).
59 % Use the testflow package mentioned above to verify correct handling of
60 % both paper sizes by the user's LaTeX system.
61 %
62 % Also note that the "draftcls" or "draftclsnofoot", not "draft", option
63 % should be used if it is desired that the figures are to be displayed in
64 % draft mode.
65 %
66
67 \documentclass[conference,pdf,a4paper,10pt,final,twoside,twocolumn]{IEEEtran}
68 \IEEEoverridecommandlockouts
69 % Add the compsoc option for Computer Society conferences.
70 %
71 % If IEEEtran.cls has not been installed into the LaTeX system files,
72 % manually specify the path to it like:
73 % \documentclass[conference]{../sty/IEEEtran}
74
75 % Some very useful LaTeX packages include:
76 % (uncomment the ones you want to load)
77
78 % *** MISC UTILITY PACKAGES ***
79 %
80 %\usepackage{ifpdf}
81 % Heiko Oberdiek's ifpdf.sty is very useful if you need conditional
82 % compilation based on whether the output is pdf or dvi.
83 % usage:
84 % \ifpdf
85 %   % pdf code
86 % \else
87 %   % dvi code
88 % \fi
89 % The latest version of ifpdf.sty can be obtained from:
90 % http://www.ctan.org/tex-archive/macros/latex/contrib/oberdiek/
91 % Also, note that IEEEtran.cls V1.7 and later provides a builtin
92 % \ifCLASSINFOpdf conditional that works the same way.
93 % When switching from latex to pdflatex and vice-versa, the compiler may
94 % have to be run twice to clear warning/error messages.
95
96
97
98 % *** CITATION PACKAGES ***
99 %
100 \usepackage{cite}
101 % cite.sty was written by Donald Arseneau
102 % V1.6 and later of IEEEtran pre-defines the format of the cite.sty package
103 % \cite{} output to follow that of IEEE. Loading the cite package will
104 % result in citation numbers being automatically sorted and properly
105 % "compressed/ranged". e.g., [1], [9], [2], [7], [5], [6] without using
106 % cite.sty will become [1], [2], [5]--[7], [9] using cite.sty. cite.sty's
107 % \cite will automatically add leading space, if needed. Use cite.sty's
108 % noadjust option (cite.sty V3.8 and later) if you want to turn this off.
109 % cite.sty is already installed on most LaTeX systems. Be sure and use
110 % version 4.0 (2003-05-27) and later if using hyperref.sty. cite.sty does
111 % not currently provide for hyperlinked citations.
112 % The latest version can be obtained at:
113 % http://www.ctan.org/tex-archive/macros/latex/contrib/cite/
114 % The documentation is contained in the cite.sty file itself.
115
116
117
118
119
120
121 % *** GRAPHICS RELATED PACKAGES ***
122 %
123 \ifCLASSINFOpdf
124   \usepackage[pdftex]{graphicx}
125   % declare the path(s) where your graphic files are
126   % \graphicspath{{../pdf/}{../jpeg/}}
127   % and their extensions so you won't have to specify these with
128   % every instance of \includegraphics
129   % \DeclareGraphicsExtensions{.pdf,.jpeg,.png}
130 \else
131   % or other class option (dvipsone, dvipdf, if not using dvips). graphicx
132   % will default to the driver specified in the system graphics.cfg if no
133   % driver is specified.
134   % \usepackage[dvips]{graphicx}
135   % declare the path(s) where your graphic files are
136   % \graphicspath{{../eps/}}
137   % and their extensions so you won't have to specify these with
138   % every instance of \includegraphics
139   % \DeclareGraphicsExtensions{.eps}
140 \fi
141 % graphicx was written by David Carlisle and Sebastian Rahtz. It is
142 % required if you want graphics, photos, etc. graphicx.sty is already
143 % installed on most LaTeX systems. The latest version and documentation can
144 % be obtained at: 
145 % http://www.ctan.org/tex-archive/macros/latex/required/graphics/
146 % Another good source of documentation is "Using Imported Graphics in
147 % LaTeX2e" by Keith Reckdahl which can be found as epslatex.ps or
148 % epslatex.pdf at: http://www.ctan.org/tex-archive/info/
149 %
150 % latex, and pdflatex in dvi mode, support graphics in encapsulated
151 % postscript (.eps) format. pdflatex in pdf mode supports graphics
152 % in .pdf, .jpeg, .png and .mps (metapost) formats. Users should ensure
153 % that all non-photo figures use a vector format (.eps, .pdf, .mps) and
154 % not a bitmapped formats (.jpeg, .png). IEEE frowns on bitmapped formats
155 % which can result in "jaggedy"/blurry rendering of lines and letters as
156 % well as large increases in file sizes.
157 %
158 % You can find documentation about the pdfTeX application at:
159 % http://www.tug.org/applications/pdftex
160
161
162
163
164
165 % *** MATH PACKAGES ***
166 %
167 %\usepackage[cmex10]{amsmath}
168 % A popular package from the American Mathematical Society that provides
169 % many useful and powerful commands for dealing with mathematics. If using
170 % it, be sure to load this package with the cmex10 option to ensure that
171 % only type 1 fonts will utilized at all point sizes. Without this option,
172 % it is possible that some math symbols, particularly those within
173 % footnotes, will be rendered in bitmap form which will result in a
174 % document that can not be IEEE Xplore compliant!
175 %
176 % Also, note that the amsmath package sets \interdisplaylinepenalty to 10000
177 % thus preventing page breaks from occurring within multiline equations. Use:
178 %\interdisplaylinepenalty=2500
179 % after loading amsmath to restore such page breaks as IEEEtran.cls normally
180 % does. amsmath.sty is already installed on most LaTeX systems. The latest
181 % version and documentation can be obtained at:
182 % http://www.ctan.org/tex-archive/macros/latex/required/amslatex/math/
183
184
185
186
187
188 % *** SPECIALIZED LIST PACKAGES ***
189 %
190 %\usepackage{algorithmic}
191 % algorithmic.sty was written by Peter Williams and Rogerio Brito.
192 % This package provides an algorithmic environment fo describing algorithms.
193 % You can use the algorithmic environment in-text or within a figure
194 % environment to provide for a floating algorithm. Do NOT use the algorithm
195 % floating environment provided by algorithm.sty (by the same authors) or
196 % algorithm2e.sty (by Christophe Fiorio) as IEEE does not use dedicated
197 % algorithm float types and packages that provide these will not provide
198 % correct IEEE style captions. The latest version and documentation of
199 % algorithmic.sty can be obtained at:
200 % http://www.ctan.org/tex-archive/macros/latex/contrib/algorithms/
201 % There is also a support site at:
202 % http://algorithms.berlios.de/index.html
203 % Also of interest may be the (relatively newer and more customizable)
204 % algorithmicx.sty package by Szasz Janos:
205 % http://www.ctan.org/tex-archive/macros/latex/contrib/algorithmicx/
206
207
208
209
210 % *** ALIGNMENT PACKAGES ***
211 %
212 %\usepackage{array}
213 % Frank Mittelbach's and David Carlisle's array.sty patches and improves
214 % the standard LaTeX2e array and tabular environments to provide better
215 % appearance and additional user controls. As the default LaTeX2e table
216 % generation code is lacking to the point of almost being broken with
217 % respect to the quality of the end results, all users are strongly
218 % advised to use an enhanced (at the very least that provided by array.sty)
219 % set of table tools. array.sty is already installed on most systems. The
220 % latest version and documentation can be obtained at:
221 % http://www.ctan.org/tex-archive/macros/latex/required/tools/
222
223
224 %\usepackage{mdwmath}
225 %\usepackage{mdwtab}
226 % Also highly recommended is Mark Wooding's extremely powerful MDW tools,
227 % especially mdwmath.sty and mdwtab.sty which are used to format equations
228 % and tables, respectively. The MDWtools set is already installed on most
229 % LaTeX systems. The lastest version and documentation is available at:
230 % http://www.ctan.org/tex-archive/macros/latex/contrib/mdwtools/
231
232
233 % IEEEtran contains the IEEEeqnarray family of commands that can be used to
234 % generate multiline equations as well as matrices, tables, etc., of high
235 % quality.
236
237
238 %\usepackage{eqparbox}
239 % Also of notable interest is Scott Pakin's eqparbox package for creating
240 % (automatically sized) equal width boxes - aka "natural width parboxes".
241 % Available at:
242 % http://www.ctan.org/tex-archive/macros/latex/contrib/eqparbox/
243
244
245
246
247
248 % *** SUBFIGURE PACKAGES ***
249 %\usepackage[tight,footnotesize]{subfigure}
250 % subfigure.sty was written by Steven Douglas Cochran. This package makes it
251 % easy to put subfigures in your figures. e.g., "Figure 1a and 1b". For IEEE
252 % work, it is a good idea to load it with the tight package option to reduce
253 % the amount of white space around the subfigures. subfigure.sty is already
254 % installed on most LaTeX systems. The latest version and documentation can
255 % be obtained at:
256 % http://www.ctan.org/tex-archive/obsolete/macros/latex/contrib/subfigure/
257 % subfigure.sty has been superceeded by subfig.sty.
258
259
260
261 %\usepackage[caption=false]{caption}
262 %\usepackage[font=footnotesize]{subfig}
263 % subfig.sty, also written by Steven Douglas Cochran, is the modern
264 % replacement for subfigure.sty. However, subfig.sty requires and
265 % automatically loads Axel Sommerfeldt's caption.sty which will override
266 % IEEEtran.cls handling of captions and this will result in nonIEEE style
267 % figure/table captions. To prevent this problem, be sure and preload
268 % caption.sty with its "caption=false" package option. This is will preserve
269 % IEEEtran.cls handing of captions. Version 1.3 (2005/06/28) and later 
270 % (recommended due to many improvements over 1.2) of subfig.sty supports
271 % the caption=false option directly:
272 %\usepackage[caption=false,font=footnotesize]{subfig}
273 %
274 % The latest version and documentation can be obtained at:
275 % http://www.ctan.org/tex-archive/macros/latex/contrib/subfig/
276 % The latest version and documentation of caption.sty can be obtained at:
277 % http://www.ctan.org/tex-archive/macros/latex/contrib/caption/
278
279
280
281
282 % *** FLOAT PACKAGES ***
283 %
284 %\usepackage{fixltx2e}
285 % fixltx2e, the successor to the earlier fix2col.sty, was written by
286 % Frank Mittelbach and David Carlisle. This package corrects a few problems
287 % in the LaTeX2e kernel, the most notable of which is that in current
288 % LaTeX2e releases, the ordering of single and double column floats is not
289 % guaranteed to be preserved. Thus, an unpatched LaTeX2e can allow a
290 % single column figure to be placed prior to an earlier double column
291 % figure. The latest version and documentation can be found at:
292 % http://www.ctan.org/tex-archive/macros/latex/base/
293
294
295
296 %\usepackage{stfloats}
297 % stfloats.sty was written by Sigitas Tolusis. This package gives LaTeX2e
298 % the ability to do double column floats at the bottom of the page as well
299 % as the top. (e.g., "\begin{figure*}[!b]" is not normally possible in
300 % LaTeX2e). It also provides a command:
301 %\fnbelowfloat
302 % to enable the placement of footnotes below bottom floats (the standard
303 % LaTeX2e kernel puts them above bottom floats). This is an invasive package
304 % which rewrites many portions of the LaTeX2e float routines. It may not work
305 % with other packages that modify the LaTeX2e float routines. The latest
306 % version and documentation can be obtained at:
307 % http://www.ctan.org/tex-archive/macros/latex/contrib/sttools/
308 % Documentation is contained in the stfloats.sty comments as well as in the
309 % presfull.pdf file. Do not use the stfloats baselinefloat ability as IEEE
310 % does not allow \baselineskip to stretch. Authors submitting work to the
311 % IEEE should note that IEEE rarely uses double column equations and
312 % that authors should try to avoid such use. Do not be tempted to use the
313 % cuted.sty or midfloat.sty packages (also by Sigitas Tolusis) as IEEE does
314 % not format its papers in such ways.
315
316
317
318
319
320 % *** PDF, URL AND HYPERLINK PACKAGES ***
321 %
322 %\usepackage{url}
323 % url.sty was written by Donald Arseneau. It provides better support for
324 % handling and breaking URLs. url.sty is already installed on most LaTeX
325 % systems. The latest version can be obtained at:
326 % http://www.ctan.org/tex-archive/macros/latex/contrib/misc/
327 % Read the url.sty source comments for usage information. Basically,
328 % \url{my_url_here}.
329
330
331
332
333
334 % *** Do not adjust lengths that control margins, column widths, etc. ***
335 % *** Do not use packages that alter fonts (such as pslatex).         ***
336 % There should be no need to do such things with IEEEtran.cls V1.6 and later.
337 % (Unless specifically asked to do so by the journal or conference you plan
338 % to submit to, of course. )
339
340 % correct bad hyphenation here
341 \hyphenation{op-tical net-works semi-conduc-tor}
342
343 % Macro for certain acronyms in small caps. Doesn't work with the
344 % default font, though (it contains no smallcaps it seems).
345 \def\acro#1{{\small{#1}}}
346 \def\acrotiny#1{{\scriptsize{#1}}}
347 \def\VHDL{\acro{VHDL}}
348 \def\GHC{\acro{GHC}}
349 \def\CLaSH{{\small{C}}$\lambda$a{\small{SH}}}
350 \def\CLaSHtiny{{\scriptsize{C}}$\lambda$a{\scriptsize{SH}}}
351
352 % Macro for pretty printing haskell snippets. Just monospaced for now, perhaps
353 % we'll get something more complex later on.
354 \def\hs#1{\texttt{#1}}
355 \def\quote#1{``{#1}"}
356
357 \newenvironment{xlist}[1][\rule{0em}{0em}]{%
358   \begin{list}{}{%
359     \settowidth{\labelwidth}{#1:}
360     \setlength{\labelsep}{0.5em}
361     \setlength{\leftmargin}{\labelwidth}
362     \addtolength{\leftmargin}{\labelsep}
363     \addtolength{\leftmargin}{\parindent}
364     \setlength{\rightmargin}{0pt}
365     \setlength{\listparindent}{\parindent}
366     \setlength{\itemsep}{0 ex plus 0.2ex}
367     \renewcommand{\makelabel}[1]{##1:\hfil}
368     }
369   }
370 {\end{list}}
371
372 \usepackage{paralist}
373 \usepackage{xcolor}
374 \def\comment#1{{\color[rgb]{1.0,0.0,0.0}{#1}}}
375
376 \usepackage{cleveref}
377 \crefname{figure}{figure}{figures}
378 \newcommand{\fref}[1]{\cref{#1}} 
379 \newcommand{\Fref}[1]{\Cref{#1}}
380
381 \usepackage{epstopdf}
382
383 \epstopdfDeclareGraphicsRule{.svg}{pdf}{.pdf}{rsvg-convert --format=pdf < #1 > \noexpand\OutputFile}
384
385 %include polycode.fmt
386 %include clash.fmt
387
388 \begin{document}
389 %
390 % paper title
391 % can use linebreaks \\ within to get better formatting as desired
392 \title{C$\lambda$aSH: Structural Descriptions \\ of Synchronous Hardware using Haskell}
393
394
395 % author names and affiliations
396 % use a multiple column layout for up to three different
397 % affiliations
398 \author{\IEEEauthorblockN{Christiaan P.R. Baaij, Matthijs Kooijman, Jan Kuper, Marco E.T. Gerards}%, Bert Molenkamp, Sabih H. Gerez}
399 \IEEEauthorblockA{%Computer Architecture for Embedded Systems (CAES)\\ 
400 Department of EEMCS, University of Twente\\
401 P.O. Box 217, 7500 AE, Enschede, The Netherlands\\
402 c.p.r.baaij@@utwente.nl, matthijs@@stdin.nl, j.kuper@@utwente.nl}
403 \thanks{Supported through the FP7 project: S(o)OS (248465)}
404 }
405 % \and
406 % \IEEEauthorblockN{Homer Simpson}
407 % \IEEEauthorblockA{Twentieth Century Fox\\
408 % Springfield, USA\\
409 % Email: homer@thesimpsons.com}
410 % \and
411 % \IEEEauthorblockN{James Kirk\\ and Montgomery Scott}
412 % \IEEEauthorblockA{Starfleet Academy\\
413 % San Francisco, California 96678-2391\\
414 % Telephone: (800) 555--1212\\
415 % Fax: (888) 555--1212}}
416
417 % conference papers do not typically use \thanks and this command
418 % is locked out in conference mode. If really needed, such as for
419 % the acknowledgment of grants, issue a \IEEEoverridecommandlockouts
420 % after \documentclass
421
422 % for over three affiliations, or if they all won't fit within the width
423 % of the page, use this alternative format:
424
425 %\author{\IEEEauthorblockN{Michael Shell\IEEEauthorrefmark{1},
426 %Homer Simpson\IEEEauthorrefmark{2},
427 %James Kirk\IEEEauthorrefmark{3}, 
428 %Montgomery Scott\IEEEauthorrefmark{3} and
429 %Eldon Tyrell\IEEEauthorrefmark{4}}
430 %\IEEEauthorblockA{\IEEEauthorrefmark{1}School of Electrical and Computer Engineering\\
431 %Georgia Institute of Technology,
432 %Atlanta, Georgia 30332--0250\\ Email: see http://www.michaelshell.org/contact.html}
433 %\IEEEauthorblockA{\IEEEauthorrefmark{2}Twentieth Century Fox, Springfield, USA\\
434 %Email: homer@thesimpsons.com}
435 %\IEEEauthorblockA{\IEEEauthorrefmark{3}Starfleet Academy, San Francisco, California 96678-2391\\
436 %Telephone: (800) 555--1212, Fax: (888) 555--1212}
437 %\IEEEauthorblockA{\IEEEauthorrefmark{4}Tyrell Inc., 123 Replicant Street, Los Angeles, California 90210--4321}}
438
439
440
441
442 % use for special paper notices
443 %\IEEEspecialpapernotice{(Invited Paper)}
444
445
446
447
448 % make the title area
449 \maketitle
450
451
452 \begin{abstract}
453 %\boldmath
454 \CLaSH\ is a functional hardware description language that borrows both its 
455 syntax and semantics from the functional programming language Haskell. Due to 
456 the abstraction and generality offered by polymorphism and higher-order 
457 functions, a circuit designer can describe circuits in a more natural way than 
458 he could in the traditional hardware description languages.
459
460 Circuit descriptions can be translated to synthesizable VHDL using the 
461 prototype \CLaSH\ compiler. As the circuit descriptions, simulation code, and 
462 test input are plain Haskell, complete simulations can be compiled to an 
463 executable binary by a Haskell compiler allowing high-speed simulation and 
464 analysis.
465
466 Stateful descriptions are supported by explicitly making the current state an 
467 argument of the function, and the updated state part of the result. In this 
468 sense, the descriptions made in \CLaSH\ are the combinational parts of a mealy 
469 machine.
470 \end{abstract}
471 % IEEEtran.cls defaults to using nonbold math in the Abstract.
472 % This preserves the distinction between vectors and scalars. However,
473 % if the conference you are submitting to favors bold math in the abstract,
474 % then you can use LaTeX's standard command \boldmath at the very start
475 % of the abstract to achieve this. Many IEEE journals/conferences frown on
476 % math in the abstract anyway.
477
478 % no keywords
479
480
481
482
483 % For peer review papers, you can put extra information on the cover
484 % page as needed:
485 % \ifCLASSOPTIONpeerreview
486 % \begin{center} \bfseries EDICS Category: 3-BBND \end{center}
487 % \fi
488 %
489 % For peerreview papers, this IEEEtran command inserts a page break and
490 % creates the second title. It will be ignored for other modes.
491 \IEEEpeerreviewmaketitle
492
493
494 \section{Introduction}
495 Hardware description languages have allowed the productivity of hardware 
496 engineers to keep pace with the development of chip technology. Standard 
497 Hardware description languages, like \VHDL~\cite{VHDL2008} and 
498 Verilog~\cite{Verilog}, allowed an engineer to describe circuits using a 
499 programming language. These standard languages are very good at describing 
500 detailed hardware properties such as timing behavior, but are generally 
501 cumbersome in expressing higher-level abstractions. In an attempt to raise the 
502 abstraction level of the descriptions, a great number of approaches based on 
503 functional languages has been proposed \cite{T-Ruby,Hydra,HML2,Hawk1,Lava,
504 ForSyDe1,Wired,reFLect}. The idea of using functional languages for hardware 
505 descriptions started in the early 1980s \cite{Cardelli1981, muFP,DAISY,FHDL}, 
506 a time which also saw the birth of the currently popular hardware description 
507 languages such as \VHDL. Functional languages are especially suited to
508 describe hardware because combinational circuits can be directly modeled
509 as mathematical functions and that functional languages are very good at
510 describing and composing mathematical functions.
511
512 In an attempt to decrease the amount of work involved in creating all the 
513 required tooling, such as parsers and type-checkers, many functional
514 hardware description languages \cite{Hydra,Hawk1,Lava,ForSyDe1,Wired}
515 are embedded as a domain specific language inside the functional
516 language Haskell \cite{Haskell}. This means that a developer is given a
517 library of Haskell functions and types that together form the language
518 primitives of the domain specific language. The primitive functions used
519 to describe a circuit do not actually process any signals, but instead
520 compose a large domain-specific datatype (which is usually hidden from
521 the designer).  This datatype is then further processed by an embedded
522 circuit compiler.  This circuit compiler actually runs in the same
523 environment as the description; as a result compile-time and run-time
524 become hard to define, as the embedded circuit compiler is usually
525 compiled by the same Haskell compiler as the circuit description itself.
526
527 The approach taken in this research is not to make another domain specific 
528 language embedded in Haskell, but to use (a subset of) the Haskell language 
529 itself for the purpose of describing hardware. By taking this approach, we can 
530 capture certain language constructs, such as Haskell's choice elements 
531 (if-expressions, case-expressions, pattern matching, etc.), which are not 
532 available in the functional hardware description languages that are embedded 
533 in Haskell as a domain specific language. As far as the authors know, such 
534 extensive support for choice-elements is new in the domain of functional 
535 hardware description languages. As the hardware descriptions are plain Haskell 
536 functions, these descriptions can be compiled to an executable binary
537 for simulation using an optimizing Haskell compiler such as the Glasgow
538 Haskell Compiler (\GHC)~\cite{ghc}.
539
540 Where descriptions in a conventional hardware description language have an 
541 explicit clock for the purpose state and synchronicity, the clock is implied 
542 in this research. A developer describes the behavior of the hardware between 
543 clock cycles. Many functional hardware description model signals as a stream 
544 of all values over time; state is then modeled as a delay on this stream of 
545 values. The approach taken in this research is to make the current state of a 
546 circuit part of the input of the function and the updated state part of the 
547 output. The current abstraction of state and time limits the descriptions to 
548 synchronous hardware, there however is room within the language to eventually 
549 add a different abstraction mechanism that will allow for the modeling of 
550 asynchronous systems.
551
552 Like the standard hardware description languages, descriptions made in a 
553 functional hardware description language must eventually be converted into a 
554 netlist. This research also features a prototype translator, which has the 
555 same name as the language: \CLaSH\footnote{\CLaSHtiny: \acrotiny{CAES} 
556 Language for Synchronous Hardware} (pronounced: clash). This compiler converts 
557 the Haskell code to equivalently behaving synthesizable \VHDL\ code, ready to 
558 be converted to an actual netlist format by an (optimizing) \VHDL\ synthesis 
559 tool.
560
561 Besides trivial circuits such as variants of both the \acro{FIR} filter and 
562 the simple \acro{CPU} shown in \Cref{sec:usecases}, the \CLaSH\ compiler has 
563 also been shown to work for non-trivial descriptions. \CLaSH\ has been able to 
564 successfully translate the functional description of a streaming reduction 
565 circuit~\cite{reductioncircuit} for floating point numbers.
566
567 \section{Hardware description in Haskell}
568
569   \subsection{Function application}
570     The basic syntactic elements of a functional program are functions
571     and function application. These have a single obvious translation to a 
572     netlist format: 
573     \begin{inparaenum}
574       \item every function is translated to a component, 
575       \item every function argument is translated to an input port,
576       \item the result value of a function is translated to an output port, 
577             and
578       \item function applications are translated to component instantiations.
579     \end{inparaenum} 
580     The output port can have a structured type (such as a tuple), so having 
581     just a single output port does not pose any limitation. The actual 
582     arguments of a function application are assigned to signals, which are 
583     then mapped to the corresponding input ports of the component. The output 
584     port of the function is also mapped to a signal, which is used as the 
585     result of the application itself.
586
587     Since every top level function generates its own component, the
588     hierarchy of function calls is reflected in the final netlist,% aswell, 
589     creating a hierarchical description of the hardware. The separation in 
590     different components makes it easier for a developer to understand and 
591     possibly hand-optimize the resulting \VHDL\ output of the \CLaSH\ 
592     compiler.
593
594     As an example we can see the netlist of the |mac| function in
595     \Cref{img:mac-comb}; the |mac| function applies both the |mul| and |add|
596     function to calculate $a * b + c$:
597     
598     \begin{code}
599     mac a b c = add (mul a b) c
600     \end{code}
601     
602     \begin{figure}
603     \centerline{\includegraphics{mac.svg}}
604     \caption{Combinatorial Multiply-Accumulate}
605     \label{img:mac-comb}
606     \end{figure}
607     
608     The result of using a structural input type can be seen in 
609     \cref{img:mac-comb-nocurry} where the |mac| function now uses a single
610     input tuple for the |a|, |b|, and |c| arguments:
611     
612     \begin{code}
613     mac (a, b, c) = add (mul a b) c
614     \end{code}
615     
616     \begin{figure}
617     \centerline{\includegraphics{mac-nocurry.svg}}
618     \caption{Combinatorial Multiply-Accumulate (complex input)}
619     \label{img:mac-comb-nocurry}
620     \end{figure}
621
622   \subsection{Choice}
623     In Haskell, choice can be achieved by a large set of syntactic elements, 
624     consisting of: \hs{case} expressions, \hs{if-then-else} expressions, 
625     pattern matching, and guards. The most general of these are the \hs{case} 
626     expressions (\hs{if} expressions can be very directly translated to 
627     \hs{case} expressions). A \hs{case} expression is translated to a 
628     multiplexer, where the control value is fed into a number of
629     comparators and their output is used to compose the selection port
630     of the multiplexer. The result of each alternative is linked to the
631     corresponding input port on the multiplexer.
632     % A \hs{case} expression can in turn simply be translated to a conditional 
633     % assignment in \VHDL, where the conditions use equality comparisons 
634     % against the constructors in the \hs{case} expressions. 
635     We can see two versions of a contrived example below, the first 
636     using a \hs{case} expression and the other using an \hs{if-then-else} 
637     expression. Both examples sums two values when they are 
638     equal or non-equal (depending on the given predicate, the \hs{pred} 
639     variable) and returns 0 otherwise. The \hs{pred} variable has the 
640     following, user-defined, enumeration datatype:
641     
642     \begin{code}
643     data Pred = Equal | NotEqual
644     \end{code}
645
646     The naive netlist corresponding to both versions of the example is 
647     depicted in \Cref{img:choice}.
648
649     \begin{code}    
650     sumif pred a b = case pred of
651       Equal -> case a == b of
652         True      -> a + b
653         False     -> 0
654       NotEqual  -> case a != b of
655         True      -> a + b
656         False     -> 0
657     \end{code}
658
659     \begin{code}
660     sumif pred a b = 
661       if pred == Equal then 
662         if a == b then a + b else 0
663       else 
664         if a != b then a + b else 0
665     \end{code}
666
667     \begin{figure}
668     \centerline{\includegraphics{choice-case.svg}}
669     \caption{Choice - sumif}
670     \label{img:choice}
671     \end{figure}
672
673     A user-friendly and also very powerful form of choice is pattern 
674     matching. A function can be defined in multiple clauses, where each clause 
675     corresponds to a pattern. When an argument matches a pattern, the 
676     corresponding clause will be used. Expressions can also contain guards, 
677     where the expression is only executed if the guard evaluates to true, and 
678     continues with the next clause if the guard evaluates to false. Like 
679     \hs{if-then-else} expressions, pattern matching and guards have a 
680     (straightforward) translation to \hs{case} expressions and can as such be 
681     mapped to multiplexers. A third version of the earlier example, using both 
682     pattern matching and guards, can be seen below. The guard is the 
683     expression that follows the vertical bar (\hs{|}) and precedes the 
684     assignment operator (\hs{=}). The \hs{otherwise} guards always evaluate to 
685     \hs{true}.
686     
687     The version using pattern matching and guards corresponds to the same 
688     naive netlist representation (\Cref{img:choice}) as the earlier two 
689     versions of the example.
690     
691     \begin{code}
692     sumif Equal     a b   | a == b      = a + b
693                           | otherwise   = 0
694     sumif NotEqual  a b   | a != b      = a + b
695                           | otherwise   = 0
696     \end{code}
697
698     % \begin{figure}
699     % \centerline{\includegraphics{choice-ifthenelse}}
700     % \caption{Choice - \emph{if-then-else}}
701     % \label{img:choice}
702     % \end{figure}
703
704   \subsection{Types}
705     Haskell is a statically-typed language, meaning that the type of a 
706     variable or function is determined at compile-time. Not all of Haskell's 
707     typing constructs have a clear translation to hardware, this section will 
708     therefore only deal with the types that do have a clear correspondence 
709     to hardware. The translatable types are divided into two categories: 
710     \emph{built-in} types and \emph{user-defined} types. Built-in types are 
711     those types for which a fixed translation is defined within the \CLaSH\ 
712     compiler. The \CLaSH\ compiler has generic translation rules to
713     translated the user-defined types described below.
714
715     The \CLaSH\ compiler is able to infer unspecified types,
716     meaning that a developer does not have to annotate every function with a 
717     type signature (even if it is good practice to do so).
718   
719     % Translation of two most basic functional concepts has been
720     % discussed: function application and choice. Before looking further
721     % into less obvious concepts like higher-order expressions and
722     % polymorphism, the possible types that can be used in hardware
723     % descriptions will be discussed.
724     % 
725     % Some way is needed to translate every value used to its hardware
726     % equivalents. In particular, this means a hardware equivalent for
727     % every \emph{type} used in a hardware description is needed.
728     % 
729     % The following types are \emph{built-in}, meaning that their hardware
730     % translation is fixed into the \CLaSH\ compiler. A designer can also
731     % define his own types, which will be translated into hardware types
732     % using translation rules that are discussed later on.
733
734   \subsubsection{Built-in types}
735     The following types have fixed translations defined within the \CLaSH\
736     compiler:
737     \begin{xlist}
738       \item[\bf{Bit}]
739         the most basic type available. It can have two values:
740         \hs{Low} or \hs{High}. 
741         % It is mapped directly onto the \texttt{std\_logic} \VHDL\ type. 
742       \item[\bf{Bool}]
743         this is a basic logic type. It can have two values: \hs{True}
744         or \hs{False}. 
745         % It is translated to \texttt{std\_logic} exactly like the \hs{Bit} 
746         % type (where a value of \hs{True} corresponds to a value of 
747         % \hs{High}). 
748         Supporting the Bool type is required in order to support the
749         \hs{if-then-else} expression, which requires a \hs{Bool} value for 
750         the condition.
751       \item[\bf{SizedWord}, \bf{SizedInt}]
752         these are types to represent integers. A \hs{SizedWord} is unsigned,
753         while a \hs{SizedInt} is signed. Both are parametrizable in their 
754         size. 
755         % , so you can define an unsigned word of 32 bits wide as follows:
756
757         % \begin{code}
758         % type Word32 = SizedWord D32
759         % \end{code}
760
761         % Here, a type synonym \hs{Word32} is defined that is equal to the
762         % \hs{SizedWord} type constructor applied to the type \hs{D32}. 
763         % \hs{D32} is the \emph{type level representation} of the decimal 
764         % number 32, making the \hs{Word32} type a 32-bit unsigned word. These 
765         % types are translated to the \VHDL\ \texttt{unsigned} and 
766         % \texttt{signed} respectively.
767       \item[\bf{Vector}]
768         this is a vector type that can contain elements of any other type and
769         has a fixed length. The \hs{Vector} type constructor takes two type 
770         arguments: the length of the vector and the type of the elements 
771         contained in it. The short-hand notation used for the vector type in  
772         the rest of paper is: \hs{[a|n]}. Where the \hs{a} is the element 
773         type, and \hs{n} is the length of the vector. Note that this is
774         a notation used in this paper only, vectors are slightly more
775         verbose in real \CLaSH\ descriptions.
776         % The state type of an 8 element register bank would then for example 
777         % be:
778
779         % \begin{code}
780         % type RegisterState = Vector D8 Word32
781         % \end{code}
782
783         % Here, a type synonym \hs{RegisterState} is defined that is equal to
784         % the \hs{Vector} type constructor applied to the types \hs{D8} (The 
785         % type level representation of the decimal number 8) and \hs{Word32} 
786         % (The 32 bit word type as defined above). In other words, the 
787         % \hs{RegisterState} type is a vector of 8 32-bit words. A fixed size 
788         % vector is translated to a \VHDL\ array type.
789       \item[\bf{Index}]
790         this is another type to describe integers, but unlike the previous
791         two it has no specific bit-width, but an upper bound. This means that
792         its range is not limited to powers of two, but can be any number.
793         An \hs{Index} only has an upper bound, its lower bound is
794         implicitly zero. The main purpose of the \hs{Index} type is to be 
795         used as an index to a \hs{Vector}.
796
797         % \comment{TODO: Perhaps remove this example?} To define an index for 
798         % the 8 element vector above, we would do:
799
800         % \begin{code}
801         % type RegisterIndex = RangedWord D7
802         % \end{code}
803
804         % Here, a type synonym \hs{RegisterIndex} is defined that is equal to
805         % the \hs{RangedWord} type constructor applied to the type \hs{D7}. In
806         % other words, this defines an unsigned word with values from
807         % 0 to 7 (inclusive). This word can be be used to index the
808         % 8 element vector \hs{RegisterState} above. This type is translated 
809         % to the \texttt{unsigned} \VHDL type.
810     \end{xlist}
811
812   \subsubsection{User-defined types}
813     There are three ways to define new types in Haskell: algebraic
814     data-types with the \hs{data} keyword, type synonyms with the \hs{type}
815     keyword and datatype renaming constructs with the \hs{newtype} keyword. 
816     \GHC\ offers a few more advanced ways to introduce types (type families,
817     existential typing, {\acro{GADT}}s, etc.) which are not standard Haskell. 
818     As it is currently unclear how these advanced type constructs correspond 
819     to hardware, they are for now unsupported by the \CLaSH\ compiler.
820
821     Only an algebraic datatype declaration actually introduces a
822     completely new type. Type synonyms and type renaming only define new 
823     names for existing types, where synonyms are completely interchangeable 
824     and type renaming requires explicit conversions. Therefore, these do not 
825     need any particular translation, a synonym or renamed type will just use 
826     the same representation as the original type. For algebraic types, we can 
827     make the following distinctions: 
828
829     \begin{xlist}
830       \item[\bf{Single constructor}]
831         Algebraic datatypes with a single constructor with one or more
832         fields, are essentially a way to pack a few values together in a
833         record-like structure. Haskell's built-in tuple types are also defined 
834         as single constructor algebraic types (but with a bit of
835         syntactic sugar). An example of a single constructor type is the
836         following pair of integers:
837         \begin{code}
838         data IntPair = IntPair Int Int
839         \end{code}
840         % These types are translated to \VHDL\ record types, with one field 
841         % for every field in the constructor.
842       \item[\bf{No fields}]
843         Algebraic datatypes with multiple constructors, but without any
844         fields are essentially a way to get an enumeration-like type
845         containing alternatives. Note that Haskell's \hs{Bool} type is also 
846         defined as an enumeration type, but that there is a fixed translation 
847         for that type within the \CLaSH\ compiler. An example of such an 
848         enumeration type is the type that represents the colors in a traffic 
849         light:
850         \begin{code}
851         data TrafficLight = Red | Orange | Green
852         \end{code}
853         % These types are translated to \VHDL\ enumerations, with one 
854         % value for each constructor. This allows references to these 
855         % constructors to be translated to the corresponding enumeration 
856         % value.
857       \item[\bf{Multiple constructors with fields}]
858         Algebraic datatypes with multiple constructors, where at least
859         one of these constructors has one or more fields are currently not 
860         supported.
861     \end{xlist}
862
863   \subsection{Polymorphism}
864     A powerful feature of most (functional) programming languages is 
865     polymorphism, it allows a function to handle values of different data 
866     types in a uniform way. Haskell supports \emph{parametric 
867     polymorphism}~\cite{polymorphism}, meaning functions can be written 
868     without mention of any specific type and can be used transparently with 
869     any number of new types.
870
871     As an example of a parametric polymorphic function, consider the type of 
872     the following \hs{append} function, which appends an element to a
873     vector:\footnote{The \hs{::} operator is used to annotate a function
874     with its type.}
875     
876     \begin{code}
877     append :: [a|n] -> a -> [a|n + 1]
878     \end{code}
879
880     This type is parameterized by \hs{a}, which can contain any type at
881     all. This means that \hs{append} can append an element to a vector,
882     regardless of the type of the elements in the list (as long as the type of 
883     the value to be added is of the same type as the values in the vector). 
884     This kind of polymorphism is extremely useful in hardware designs to make 
885     operations work on a vector without knowing exactly what elements are 
886     inside, routing signals without knowing exactly what kinds of signals 
887     these are, or working with a vector without knowing exactly how long it 
888     is. Polymorphism also plays an important role in most higher order 
889     functions, as we will see in the next section.
890
891     Another type of polymorphism is \emph{ad-hoc 
892     polymorphism}~\cite{polymorphism}, which refers to polymorphic 
893     functions which can be applied to arguments of different types, but which 
894     behave differently depending on the type of the argument to which they are 
895     applied. In Haskell, ad-hoc polymorphism is achieved through the use of 
896     type classes, where a class definition provides the general interface of a 
897     function, and class instances define the functionality for the specific 
898     types. An example of such a type class is the \hs{Num} class, which 
899     contains all of Haskell's numerical operations. A designer can make use 
900     of this ad-hoc polymorphism by adding a constraint to a parametrically 
901     polymorphic type variable. Such a constraint indicates that the type 
902     variable can only be instantiated to a type whose members supports the 
903     overloaded functions associated with the type class. 
904     
905     As an example we will take a look at type signature of the function 
906     \hs{sum}, which sums the values in a vector:
907     \begin{code}
908     sum :: Num a => [a|n] -> a
909     \end{code}
910
911     This type is again parameterized by \hs{a}, but it can only contain
912     types that are \emph{instances} of the \emph{type class} \hs{Num}, so that  
913     we know that the addition (+) operator is defined for that type. 
914     \CLaSH's built-in numerical types are also instances of the \hs{Num}
915     class, so we can use the addition operator (and thus the \hs{sum}
916     function) with \hs{SizedWords} as well as with \hs{SizedInts}.
917
918     In \CLaSH, parametric polymorphism is completely supported. Any function 
919     defined can have any number of unconstrained type parameters. The \CLaSH\ 
920     compiler will infer the type of every such argument depending on how the 
921     function is applied. There is however one constraint: the top level 
922     function that is being translated can not have any polymorphic arguments. 
923     The arguments can not be polymorphic as the function is never applied and 
924     consequently there is no way to determine the actual types for the type 
925     parameters.
926
927     \CLaSH\ does not support user-defined type classes, but does use some
928     of the standard Haskell type classes for its built-in function, such as: 
929     \hs{Num} for numerical operations, \hs{Eq} for the equality operators, and
930     \hs{Ord} for the comparison/order operators.
931
932   \subsection{Higher-order functions \& values}
933     Another powerful abstraction mechanism in functional languages, is
934     the concept of \emph{higher-order functions}, or \emph{functions as
935     a first class value}. This allows a function to be treated as a
936     value and be passed around, even as the argument of another
937     function. The following example should clarify this concept:
938     
939     \begin{code}
940     negateVector xs = map not xs
941     \end{code}
942
943     The code above defines the \hs{negateVector} function, which takes a 
944     vector of booleans, \hs{xs}, and returns a vector where all the values are 
945     negated. It achieves this by calling the \hs{map} function, and passing it 
946     \emph{another function}, boolean negation, and the vector of booleans, 
947     \hs{xs}. The \hs{map} function applies the negation function to all the 
948     elements in the vector.
949
950     The \hs{map} function is called a higher-order function, since it takes 
951     another function as an argument. Also note that \hs{map} is again a 
952     parametric polymorphic function: it does not pose any constraints on the 
953     type of the input vector, other than that its elements must have the same 
954     type as the first argument of the function passed to \hs{map}. The element 
955     type of the resulting vector is equal to the return type of the function 
956     passed, which need not necessarily be the same as the element type of the 
957     input vector. All of these characteristics  can readily be inferred from 
958     the type signature belonging to \hs{map}:
959
960     \begin{code}
961     map :: (a -> b) -> [a|n] -> [b|n]
962     \end{code}
963
964     So far, only functions have been used as higher-order values. In
965     Haskell, there are two more ways to obtain a function-typed value:
966     partial application and lambda abstraction. Partial application
967     means that a function that takes multiple arguments can be applied
968     to a single argument, and the result will again be a function (but
969     that takes one argument less). As an example, consider the following
970     expression, that adds one to every element of a vector:
971
972     \begin{code}
973     map (+ 1) xs
974     \end{code}
975
976     Here, the expression \hs{(+ 1)} is the partial application of the
977     plus operator to the value \hs{1}, which is again a function that
978     adds one to its (next) argument. A lambda expression allows one to 
979     introduce an anonymous function in any expression. Consider the following 
980     expression, which again adds one to every element of a vector:
981
982     \begin{code}
983     map (\x -> x + 1) xs
984     \end{code}
985
986     Finally, not only built-in functions can have higher order
987     arguments, but any function defined in \CLaSH can have function
988     arguments. This allows the hardware designer to use a powerful
989     abstraction mechanism in his designs and have an optimal amount of
990     code reuse. The only exception is again the top-level function: if a 
991     function-typed argument is not applied with an actual function, no 
992     hardware can be generated.    
993
994     % \comment{TODO: Describe ALU example (no code)}
995
996   \subsection{State}
997     A very important concept in hardware is the concept of state. In a 
998     stateful design, the outputs depend on the history of the inputs, or the 
999     state. State is usually stored in registers, which retain their value 
1000     during a clock cycle. As we want to describe more than simple 
1001     combinational designs, \CLaSH\ needs an abstraction mechanism for state.
1002
1003     An important property in Haskell, and in most other functional languages, 
1004     is \emph{purity}. A function is said to be \emph{pure} if it satisfies two
1005     conditions:
1006     \begin{inparaenum}
1007       \item given the same arguments twice, it should return the same value in 
1008       both cases, and
1009       \item when the function is called, it should not have observable 
1010       side-effects.
1011     \end{inparaenum}
1012     % This purity property is important for functional languages, since it 
1013     % enables all kinds of mathematical reasoning that could not be guaranteed 
1014     % correct for impure functions. 
1015     Pure functions are as such a perfect match for combinational circuits, 
1016     where the output solely depends on the inputs. When a circuit has state 
1017     however, it can no longer be simply described by a pure function. 
1018     % Simply removing the purity property is not a valid option, as the 
1019     % language would then lose many of it mathematical properties. 
1020     In \CLaSH\ we deal with the concept of state in pure functions by making 
1021     current value of the state an additional argument of the function and the 
1022     updated state part of result. In this sense the descriptions made in 
1023     \CLaSH\ are the combinational parts of a mealy machine.
1024     
1025     A simple example is adding an accumulator register to the earlier 
1026     multiply-accumulate circuit, of which the resulting netlist can be seen in 
1027     \Cref{img:mac-state}:
1028     
1029     \begin{code}
1030     macS (State c) a b = (State c', c')
1031       where
1032         c' = mac a b c
1033     \end{code}
1034     
1035     \begin{figure}
1036     \centerline{\includegraphics{mac-state.svg}}
1037     \caption{Stateful Multiply-Accumulate}
1038     \label{img:mac-state}
1039     \end{figure}
1040     
1041     The \hs{State} keyword indicates which arguments are part of the current 
1042     state, and what part of the output is part of the updated state. This 
1043     aspect will also be reflected in the type signature of the function. 
1044     Abstracting the state of a circuit in this way makes it very explicit: 
1045     which variables are part of the state is completely determined by the 
1046     type signature. This approach to state is well suited to be used in 
1047     combination with the existing code and language features, such as all the 
1048     choice elements, as state values are just normal values. We can simulate 
1049     stateful descriptions using the recursive \hs{run} function:
1050     
1051     \begin{code}
1052     run f s (i : inps) = o : (run f s' inps)
1053       where
1054         (s', o) = f s i
1055     \end{code}
1056     
1057     The \hs{(:)} operator is the list concatenation operator, where the 
1058     left-hand side is the head of a list and the right-hand side is the 
1059     remainder of the list. The \hs{run} function applies the function the 
1060     developer wants to simulate, \hs{f}, to the current state, \hs{s}, and the 
1061     first input value, \hs{i}. The result is the first output value, \hs{o}, 
1062     and the updated state \hs{s'}. The next iteration of the \hs{run} function 
1063     is then called with the updated state, \hs{s'}, and the rest of the 
1064     inputs, \hs{inps}. It is assumed that there is one input per clock cycle.
1065     Also note how the order of the input, output, and state in the \hs{run} 
1066     function corresponds with the order of the input, output and state of the 
1067     \hs{macS} function described earlier.
1068     
1069     As both the \hs{run} function, the hardware description, and the test 
1070     inputs are plain Haskell, the complete simulation can be compiled to an 
1071     executable binary by an optimizing Haskell compiler, or executed in an 
1072     Haskell interpreter. Both simulation paths are much faster than first 
1073     translating the description to \VHDL\ and then running a \VHDL\ 
1074     simulation, where the executable binary has an additional simulation speed 
1075     bonus in case there is a large set of test inputs.
1076     
1077 \section{\CLaSH\ compiler}
1078 An important aspect in this research is the creation of the prototype 
1079 compiler, which allows us to translate descriptions made in the \CLaSH\ 
1080 language as described in the previous section to synthesizable \VHDL, allowing 
1081 a designer to actually run a \CLaSH\ design on an \acro{FPGA}.
1082
1083 The Glasgow Haskell Compiler (\GHC) is an open-source Haskell compiler that 
1084 also provides a high level API to most of its internals. The availability of 
1085 this high-level API obviated the need to design many of the tedious parts of 
1086 the prototype compiler, such as the parser, semantic checker, and especially 
1087 the type-checker. The parser, semantic checker, and type-checker together form 
1088 the front-end of the prototype compiler pipeline, as depicted in 
1089 \Cref{img:compilerpipeline}.
1090
1091 \begin{figure}
1092 \centerline{\includegraphics{compilerpipeline.svg}}
1093 \caption{\CLaSHtiny\ compiler pipeline}
1094 \label{img:compilerpipeline}
1095 \end{figure}
1096
1097 The output of the \GHC\ front-end is the original Haskell description 
1098 translated to \emph{Core}~\cite{Sulzmann2007}, which is smaller, typed, 
1099 functional language that is relatively easier to process than the larger 
1100 Haskell language. A description in \emph{Core} can still contain properties 
1101 which have no direct translation to hardware, such as polymorphic types and 
1102 function-valued arguments. Such a description needs to be transformed to a 
1103 \emph{normal form}, which only contains properties that have a direct 
1104 translation. The second stage of the compiler, the \emph{normalization} phase, 
1105 exhaustively applies a set of \emph{meaning-preserving} transformations on the 
1106 \emph{Core} description until this description is in a \emph{normal form}. 
1107 This set of transformations includes transformations typically found in 
1108 reduction systems for lambda calculus~\cite{lambdacalculus}, such a 
1109 $\beta$-reduction and $\eta$-expansion, but also includes self-defined 
1110 transformations that are responsible for the reduction of higher-order 
1111 functions to `regular' first-order functions.
1112
1113 The final step in the compiler pipeline is the translation to a \VHDL\ 
1114 \emph{netlist}, which is a straightforward process due to resemblance of a 
1115 normalized description and a set of concurrent signal assignments. We call the 
1116 end-product of the \CLaSH\ compiler a \VHDL\ \emph{netlist} as the resulting 
1117 \VHDL\ resembles an actual netlist description and not idiomatic \VHDL.
1118
1119 \section{Use cases}
1120 \label{sec:usecases}
1121 \subsection{FIR Filter}
1122 As an example of a common hardware design where the use of higher-order
1123 functions leads to a very natural description is a \acro{FIR} filter, which is 
1124 basically the dot-product of two vectors:
1125
1126 \begin{equation}
1127 y_t  = \sum\nolimits_{i = 0}^{n - 1} {x_{t - i}  \cdot h_i } 
1128 \end{equation}
1129
1130 A \acro{FIR} filter multiplies fixed constants ($h$) with the current 
1131 and a few previous input samples ($x$). Each of these multiplications
1132 are summed, to produce the result at time $t$. The equation of a \acro{FIR} 
1133 filter is indeed equivalent to the equation of the dot-product, which is 
1134 shown below:
1135
1136 \begin{equation}
1137 \mathbf{a}\bullet\mathbf{b} = \sum\nolimits_{i = 0}^{n - 1} {a_i \cdot b_i } 
1138 \end{equation}
1139
1140 We can easily and directly implement the equation for the dot-product
1141 using higher-order functions:
1142
1143 \begin{code}
1144 as *+* bs = foldl1 (+) (zipWith (*) as bs)
1145 \end{code}
1146
1147 The \hs{zipWith} function is very similar to the \hs{map} function seen 
1148 earlier: It takes a function, two vectors, and then applies the function to 
1149 each of the elements in the two vectors pairwise (\emph{e.g.}, \hs{zipWith (*) 
1150 [1, 2] [3, 4]} becomes \hs{[1 * 3, 2 * 4]}).
1151
1152 The \hs{foldl1} function takes a binary function, a single vector, and applies 
1153 the function to the first two elements of the vector. It then applies the
1154 function to the result of the first application and the next element in the 
1155 vector. This continues until the end of the vector is reached. The result of 
1156 the \hs{foldl1} function is the result of the last application. It is obvious 
1157 that the \hs{zipWith (*)} function is pairwise multiplication and that the 
1158 \hs{foldl1 (+)} function is summation.
1159
1160 Returning to the actual \acro{FIR} filter, we will slightly change the 
1161 equation describing it, so as to make the translation to code more obvious and 
1162 concise. What we do is change the definition of the vector of input samples 
1163 and delay the computation by one sample. Instead of having the input sample 
1164 received at time $t$ stored in $x_t$, $x_0$ now always stores the newest 
1165 sample, and $x_i$ stores the $ith$ previous sample. This changes the equation 
1166 to the following (note that this is completely equivalent to the original 
1167 equation, just with a different definition of $x$ that will better suit the 
1168 transformation to code):
1169
1170 \begin{equation}
1171 y_t  = \sum\nolimits_{i = 0}^{n - 1} {x_i  \cdot h_i } 
1172 \end{equation}
1173
1174 The complete definition of the \acro{FIR} filter in code then becomes:
1175
1176 \begin{code}
1177 fir (State (xs,hs)) x = (State (x >> xs,hs), xs *+* hs)
1178 \end{code}
1179
1180 Where the vector \hs{hs} contains the \acro{FIR} coefficients and the vector 
1181 \hs{xs} contains the previous input sample in front and older samples behind. 
1182 The code for the shift (\hs{>>}) operator, that adds the new input sample 
1183 (\hs{x}) to the list of previous input samples (\hs{xs}) and removes the 
1184 oldest sample, is shown below:
1185
1186 \begin{code}
1187 x >> xs = x +> init xs  
1188 \end{code}
1189
1190 The \hs{init} function returns all but the last element of a vector, and the 
1191 concatenate operator (\hs{+>}) adds a new element to the front of a vector. 
1192 The resulting netlist of a 4-taps \acro{FIR} filter, created by specializing 
1193 the vectors of the \acro{FIR} code to a length of 4, is depicted in 
1194 \Cref{img:4tapfir}.
1195
1196 \begin{figure}
1197 \centerline{\includegraphics{4tapfir.svg}}
1198 \caption{4-taps \acrotiny{FIR} Filter}
1199 \label{img:4tapfir}
1200 \end{figure}
1201
1202 \subsection{Higher order CPU}
1203 The following simple CPU is an example of user-defined higher order
1204 functions and pattern matching. The CPU consists of four function units,
1205 of which three have a fixed function and one can perform some less
1206 common operations.
1207
1208 The CPU contains a number of data sources, represented by the horizontal
1209 lines in figure TODO:REF. These data sources offer the previous outputs
1210 of each function units, along with the single data input the cpu has and
1211 two fixed intialization values.
1212
1213 Each of the function units has both its operands connected to all data
1214 sources, and can be programmed to select any data source for either
1215 operand. In addition, the leftmost function unit has an additional
1216 opcode input to select the operation it performs. Its output is also the
1217 output of the entire cpu.
1218
1219 Looking at the code, the function unit is the most simple. It arranges
1220 the operand selection for the function unit. Note that it does not
1221 define the actual operation that takes place inside the function unit,
1222 but simply accepts the (higher order) argument "op" which is a function
1223 of two arguments that defines the operation.
1224
1225 \begin{code}
1226 fu op inputs (addr1, addr2) = regIn
1227   where
1228     in1     = inputs!addr1
1229     in2     = inputs!addr2
1230     regIn   = op in1 in2
1231 \end{code}
1232
1233 The multiop function defines the operation that takes place in the
1234 leftmost function unit. It is essentially a simple three operation alu
1235 that makes good use of pattern matching and guards in its description.
1236 The \hs{shift} function used here shifts its first operand by the number
1237 of bits indicated in the second operand, the \hs{xor} function produces
1238 the bitwise xor of its operands.
1239
1240 \begin{code}
1241 data Opcode = Shift | Xor | Equal
1242
1243 multiop :: Opcode -> Word -> Word -> Word
1244 multiop opc a b = case opc of
1245   Shift             -> shift a b
1246   Xor               -> xor a b 
1247   Equal | a == b    -> 1
1248         | otherwise -> 0
1249 \end{code}
1250
1251 The cpu function ties everything together. It applies the \hs{fu}
1252 function four times, to create a different function unit each time. The
1253 first application is interesting, because it does not just pass a
1254 function to \hs{fu}, but a partial application of \hs{multiop}. This
1255 shows how the first funcition unit effectively gets an extra input,
1256 compared to the others.
1257
1258 The vector \hs{inputs} is the set of data sources, which is passed to
1259 each function unit for operand selection. The cpu also receives a vector
1260 of address pairs, which are used by each function unit to select their
1261 operand. The application of the function units to the \hs{inputs} and
1262 \hs{addrs} arguments seems quite repetive and could be rewritten to use
1263 a combination of the \hs{map} and \hs{zipwith} functions instead.
1264 However, the prototype does not currently support working with lists of
1265 functions, so the more explicit version of the code is given instead).
1266
1267 \begin{code}
1268 type CpuState = State [Word | 4]
1269
1270 cpu :: CpuState -> Word -> [(Index 6, Index 6) | 4] 
1271        -> Opcode -> (CpuState, Word)
1272 cpu (State s) input addrs opc = (State s', out)
1273   where
1274     s'    =   [ fu (multiop opc)  inputs (addrs!0)
1275               , fu (+)            inputs (addrs!1)
1276               , fu (-)            inputs (addrs!2)
1277               , fu (*)            inputs (addrs!3)
1278               ]
1279     inputs    =   0 +> (1 +> (input +> s))
1280     out       =   head s'
1281 \end{code}
1282
1283 Of course, this is still a simple example, but it could form the basis
1284 of an actual design, in which the same techniques can be reused.
1285
1286 \section{Related work}
1287 This section describes the features of existing (functional) hardware 
1288 description languages and highlights the advantages that this research has 
1289 over existing work.
1290
1291 Many functional hardware description languages have been developed over the 
1292 years. Early work includes such languages as $\mu$\acro{FP}~\cite{muFP}, an 
1293 extension of Backus' \acro{FP} language to synchronous streams, designed 
1294 particularly for describing and reasoning about regular circuits. The 
1295 Ruby~\cite{Ruby} language uses relations, instead of functions, to describe 
1296 circuits, and has a particular focus on layout. 
1297
1298 \acro{HML}~\cite{HML2} is a hardware modeling language based on the strict 
1299 functional language \acro{ML}, and has support for polymorphic types and 
1300 higher-order functions. Published work suggests that there is no direct 
1301 simulation support for \acro{HML}, but that a description in \acro{HML} has to 
1302 be translated to \VHDL\ and that the translated description can then be 
1303 simulated in a \VHDL\ simulator. Also not all of the mentioned language 
1304 features of \acro{HML} could be translated to hardware. The \CLaSH\ compiler 
1305 on the other hand can correctly translate all of the language constructs 
1306 mentioned in this paper to a netlist format.
1307
1308 Like this work, many functional hardware description languages have some sort 
1309 of foundation in the functional programming language Haskell. 
1310 Hawk~\cite{Hawk1} uses Haskell to describe system-level executable 
1311 specifications used to model the behavior of superscalar microprocessors. Hawk 
1312 specifications can be simulated, but there seems to be no support for 
1313 automated circuit synthesis. 
1314
1315 The ForSyDe~\cite{ForSyDe2} system uses Haskell to specify abstract system 
1316 models, which can (manually) be transformed into an implementation model using 
1317 semantic preserving transformations. A designer can model systems using 
1318 heterogeneous models of computation, which include continuous time, 
1319 synchronous and untimed models of computation. Using so-called domain 
1320 interfaces a designer can simulate electronic systems which have both analog 
1321 as digital parts. ForSyDe has several backends including simulation and 
1322 automated synthesis, though automated synthesis is restricted to the 
1323 synchronous model of computation within ForSyDe. Unlike \CLaSH\ there is no 
1324 support for the automated synthesis of descriptions that contain polymorphism 
1325 or higher-order functions.
1326
1327 Lava~\cite{Lava} is a hardware description language that focuses on the 
1328 structural representation of hardware. Besides support for simulation and 
1329 circuit synthesis, Lava descriptions can be interfaced with formal method 
1330 tools for formal verification. Lava descriptions are actually circuit 
1331 generators when viewed from a synthesis viewpoint, in that the language 
1332 elements of Haskell, such as choice, can be used to guide the circuit 
1333 generation. If a developer wants to insert a choice element inside an actual 
1334 circuit he will have to explicitly instantiate a multiplexer-like component. 
1335
1336 In this respect \CLaSH\ differs from Lava, in that all the choice elements, 
1337 such as case-statements and pattern matching, are synthesized to choice 
1338 elements in the eventual circuit. As such, richer control structures can both 
1339 be specified and synthesized in \CLaSH\ compared to any of the languages 
1340 mentioned in this section.
1341
1342 The merits of polymorphic typing, combined with higher-order functions, are 
1343 now also recognized in the `main-stream' hardware description languages, 
1344 exemplified by the new \VHDL-2008 standard~\cite{VHDL2008}. \VHDL-2008 support 
1345 for generics has been extended to types and subprograms, allowing a developer to describe components with polymorphic ports and function-valued arguments. Note that the types and subprograms still require an explicit generic map, whereas types can be automatically inferred, and function-values can be automatically propagated by the \CLaSH\ compiler. There are also no (generally available) \VHDL\ synthesis tools that currently support the \VHDL-2008 standard, and thus the synthesis of polymorphic types and function-valued arguments.
1346
1347 % Wired~\cite{Wired},, T-Ruby~\cite{T-Ruby}, Hydra~\cite{Hydra}. 
1348
1349 % A functional language designed specifically for hardware design is 
1350 % $re{\mathit{FL}}^{ect}$~\cite{reFLect}, which draws experience from earlier 
1351 % language called \acro{FL}~\cite{FL} to la
1352
1353 % An example of a floating figure using the graphicx package.
1354 % Note that \label must occur AFTER (or within) \caption.
1355 % For figures, \caption should occur after the \includegraphics.
1356 % Note that IEEEtran v1.7 and later has special internal code that
1357 % is designed to preserve the operation of \label within \caption
1358 % even when the captionsoff option is in effect. However, because
1359 % of issues like this, it may be the safest practice to put all your
1360 % \label just after \caption rather than within \caption{}.
1361 %
1362 % Reminder: the "draftcls" or "draftclsnofoot", not "draft", class
1363 % option should be used if it is desired that the figures are to be
1364 % displayed while in draft mode.
1365 %
1366 %\begin{figure}[!t]
1367 %\centering
1368 %\includegraphics[width=2.5in]{myfigure}
1369 % where an .eps filename suffix will be assumed under latex, 
1370 % and a .pdf suffix will be assumed for pdflatex; or what has been declared
1371 % via \DeclareGraphicsExtensions.
1372 %\caption{Simulation Results}
1373 %\label{fig_sim}
1374 %\end{figure}
1375
1376 % Note that IEEE typically puts floats only at the top, even when this
1377 % results in a large percentage of a column being occupied by floats.
1378
1379
1380 % An example of a double column floating figure using two subfigures.
1381 % (The subfig.sty package must be loaded for this to work.)
1382 % The subfigure \label commands are set within each subfloat command, the
1383 % \label for the overall figure must come after \caption.
1384 % \hfil must be used as a separator to get equal spacing.
1385 % The subfigure.sty package works much the same way, except \subfigure is
1386 % used instead of \subfloat.
1387 %
1388 %\begin{figure*}[!t]
1389 %\centerline{\subfloat[Case I]\includegraphics[width=2.5in]{subfigcase1}%
1390 %\label{fig_first_case}}
1391 %\hfil
1392 %\subfloat[Case II]{\includegraphics[width=2.5in]{subfigcase2}%
1393 %\label{fig_second_case}}}
1394 %\caption{Simulation results}
1395 %\label{fig_sim}
1396 %\end{figure*}
1397 %
1398 % Note that often IEEE papers with subfigures do not employ subfigure
1399 % captions (using the optional argument to \subfloat), but instead will
1400 % reference/describe all of them (a), (b), etc., within the main caption.
1401
1402
1403 % An example of a floating table. Note that, for IEEE style tables, the 
1404 % \caption command should come BEFORE the table. Table text will default to
1405 % \footnotesize as IEEE normally uses this smaller font for tables.
1406 % The \label must come after \caption as always.
1407 %
1408 %\begin{table}[!t]
1409 %% increase table row spacing, adjust to taste
1410 %\renewcommand{\arraystretch}{1.3}
1411 % if using array.sty, it might be a good idea to tweak the value of
1412 % \extrarowheight as needed to properly center the text within the cells
1413 %\caption{An Example of a Table}
1414 %\label{table_example}
1415 %\centering
1416 %% Some packages, such as MDW tools, offer better commands for making tables
1417 %% than the plain LaTeX2e tabular which is used here.
1418 %\begin{tabular}{|c||c|}
1419 %\hline
1420 %One & Two\\
1421 %\hline
1422 %Three & Four\\
1423 %\hline
1424 %\end{tabular}
1425 %\end{table}
1426
1427
1428 % Note that IEEE does not put floats in the very first column - or typically
1429 % anywhere on the first page for that matter. Also, in-text middle ("here")
1430 % positioning is not used. Most IEEE journals/conferences use top floats
1431 % exclusively. Note that, LaTeX2e, unlike IEEE journals/conferences, places
1432 % footnotes above bottom floats. This can be corrected via the \fnbelowfloat
1433 % command of the stfloats package.
1434
1435
1436
1437 \section{Conclusion}
1438 This research demonstrates once more that functional languages are well suited 
1439 for hardware descriptions: function applications provide an elegant notation 
1440 for component instantiation. Where this research goes beyond the existing 
1441 (functional) hardware descriptions languages is the inclusion of various 
1442 choice elements, such as patter matching, that are well suited to describe the 
1443 conditional assignments in control-oriented hardware. Besides being able to 
1444 translate these basic constructs to synthesizable \VHDL, the prototype 
1445 compiler can also correctly translate descriptions that contain both 
1446 polymorphic types and function-valued arguments.
1447
1448 Where recent functional hardware description languages have mostly opted to 
1449 embed themselves in an existing functional language, this research features a 
1450 `true' compiler. As a result there is a clear distinction between compile-time 
1451 and run-time, which allows a myriad of choice constructs to be part of the 
1452 actual circuit description; a feature the embedded hardware description 
1453 languages do not offer.
1454
1455 \section{Future Work}
1456 The choice of describing state explicitly as extra arguments and results can 
1457 be seen as a mixed blessing. Even though the description that use state are 
1458 usually very clear, one finds that dealing with unpacking, passing, receiving 
1459 and repacking can become tedious and even error-prone, especially in the case 
1460 of sub-states. Removing this boilerplate, or finding a more suitable 
1461 abstraction mechanism would make \CLaSH\ easier to use.
1462
1463 The transformations in normalization phase of the prototype compiler were 
1464 developed in an ad-hoc manner, which makes the existence of many desirable 
1465 properties unclear. Such properties include whether the complete set of 
1466 transformations will always lead to a normal form or if the normalization 
1467 process always terminates. Though various use cases suggests that these 
1468 properties usually hold, they have not been formally proven. A systematic 
1469 approach to defining the set of transformations allows one to proof that the 
1470 earlier mentioned properties do indeed exist.
1471
1472 % conference papers do not normally have an appendix
1473
1474
1475 % use section* for acknowledgement
1476 % \section*{Acknowledgment}
1477
1478 % The authors would like to thank...
1479
1480 % trigger a \newpage just before the given reference
1481 % number - used to balance the columns on the last page
1482 % adjust value as needed - may need to be readjusted if
1483 % the document is modified later
1484 \IEEEtriggeratref{14}
1485 % The "triggered" command can be changed if desired:
1486 %\IEEEtriggercmd{\enlargethispage{-5in}}
1487
1488 % references section
1489
1490 % can use a bibliography generated by BibTeX as a .bbl file
1491 % BibTeX documentation can be easily obtained at:
1492 % http://www.ctan.org/tex-archive/biblio/bibtex/contrib/doc/
1493 % The IEEEtran BibTeX style support page is at:
1494 % http://www.michaelshell.org/tex/ieeetran/bibtex/
1495 \bibliographystyle{IEEEtran}
1496 % argument is your BibTeX string definitions and bibliography database(s)
1497 \bibliography{clash}
1498 %
1499 % <OR> manually copy in the resultant .bbl file
1500 % set second argument of \begin to the number of references
1501 % (used to reserve space for the reference number labels box)
1502 % \begin{thebibliography}{1}
1503
1504 % \bibitem{IEEEhowto:kopka}
1505 % H.~Kopka and P.~W. Daly, \emph{A Guide to \LaTeX}, 3rd~ed.\hskip 1em plus
1506 %   0.5em minus 0.4em\relax Harlow, England: Addison-Wesley, 1999.
1507
1508 % \end{thebibliography}
1509
1510
1511
1512
1513 % that's all folks
1514 \end{document}
1515
1516 % vim: set ai sw=2 sts=2 expandtab: