X-Git-Url: https://git.stderr.nl/gitweb?p=matthijs%2Fmaster-project%2Fc%CE%BBash.git;a=blobdiff_plain;f=Flatten.hs;h=d25ef73aceabb2feec43007b1a469b267a72ce09;hp=11738c70f5803509056662013ee711b6fec93c54;hb=HEAD;hpb=c0fa1614f8bb0126868658fad79b01df447e113a diff --git a/Flatten.hs b/Flatten.hs index 11738c7..d25ef73 100644 --- a/Flatten.hs +++ b/Flatten.hs @@ -8,6 +8,7 @@ import qualified Maybe import qualified Control.Arrow as Arrow import qualified DataCon import qualified TyCon +import qualified Literal import qualified CoreUtils import qualified TysWiredIn import qualified IdInfo @@ -15,11 +16,12 @@ import qualified Data.Traversable as Traversable import qualified Data.Foldable as Foldable import Control.Applicative import Outputable ( showSDoc, ppr ) -import qualified Control.Monad.State as State +import qualified Control.Monad.Trans.State as State import HsValueMap import TranslatorTypes import FlattenTypes +import CoreTools -- Extract the arguments from a data constructor application (that is, the -- normal args, leaving out the type args). @@ -52,11 +54,10 @@ markSignal use id = markSignals use [id] -- | Flatten a haskell function flattenFunction :: HsFunction -- ^ The function to flatten - -> CoreBind -- ^ The function value + -> (CoreBndr, CoreExpr) -- ^ The function value -> FlatFunction -- ^ The resulting flat function -flattenFunction _ (Rec _) = error "Recursive binders not supported" -flattenFunction hsfunc bind@(NonRec var expr) = +flattenFunction hsfunc (var, expr) = FlatFunction args res defs sigs where init_state = ([], [], 0) @@ -157,13 +158,21 @@ flattenExpr binds var@(Var id) = Left sig_use -> return ([], sig_use) Right _ -> error "Higher order functions not supported." IdInfo.DataConWorkId datacon -> do - lit <- dataConToLiteral datacon - let ty = CoreUtils.exprType var - sig_id <- genSignalId SigInternal ty - -- Add a name hint to the signal - addNameHint (Name.getOccString id) sig_id - addDef (UncondDef (Right $ Literal lit) sig_id) - return ([], Single sig_id) + if DataCon.isTupleCon datacon && (null $ DataCon.dataConAllTyVars datacon) + then do + -- Empty tuple construction + return ([], Tuple []) + else do + lit <- dataConToLiteral datacon + let ty = CoreUtils.exprType var + sig_id <- genSignalId SigInternal ty + -- Add a name hint to the signal + addNameHint (Name.getOccString id) sig_id + addDef (UncondDef (Right $ Literal lit Nothing) sig_id) + return ([], Single sig_id) + IdInfo.VanillaGlobal -> + -- Treat references to globals as an application with zero elements + flattenApplicationExpr binds (CoreUtils.exprType var) id [] otherwise -> error $ "Ids other than local vars and dataconstructors not supported: " ++ (showSDoc $ ppr id) @@ -198,6 +207,23 @@ flattenExpr binds app@(App _ _) = do ([], b) <- flattenExpr binds (last args) res <- mkEqComparisons a b return ([], res) + else if fname == "fromInteger" then do + let [to_ty, to_dict, val] = args + -- We assume this is an application of the GHC.Integer.smallInteger + -- function to a literal + let App smallint (Lit lit) = val + let (Literal.MachInt int) = lit + let ty = CoreUtils.exprType app + sig_id <- genSignalId SigInternal ty + -- TODO: fromInteger is defined for more types than just SizedWord + let len = sized_word_len ty + -- Use a to_unsigned to translate the number (a natural) to an unsiged + -- (array of bits) + let lit_str = "to_unsigned(" ++ (show int) ++ ", " ++ (show len) ++ ")" + -- Set the signal to our literal unconditionally, but add the type so + -- the literal will be typecast to the proper type. + addDef $ UncondDef (Right $ Literal lit_str (Just ty)) sig_id + return ([], Single sig_id) else flattenApplicationExpr binds (CoreUtils.exprType app) f args where @@ -217,42 +243,12 @@ flattenExpr binds app@(App _ _) = do flattenBuildTupleExpr binds args = do -- Flatten each of our args - flat_args <- (State.mapM (flattenExpr binds) args) + flat_args <- (mapM (flattenExpr binds) args) -- Check and split each of the arguments let (_, arg_ress) = unzip (zipWith checkArg args flat_args) let res = Tuple arg_ress return ([], res) - -- | Flatten a normal application expression - flattenApplicationExpr binds ty f args = do - -- Find the function to call - let func = appToHsFunction ty f args - -- Flatten each of our args - flat_args <- (State.mapM (flattenExpr binds) args) - -- Check and split each of the arguments - let (_, arg_ress) = unzip (zipWith checkArg args flat_args) - -- Generate signals for our result - res <- genSignals ty - -- Add name hints to the generated signals - let resname = Name.getOccString f ++ "_res" - Traversable.mapM (addNameHint resname) res - -- Create the function application - let app = FApp { - appFunc = func, - appArgs = arg_ress, - appRes = res - } - addDef app - return ([], res) - -- | Check a flattened expression to see if it is valid to use as a - -- function argument. The first argument is the original expression for - -- use in the error message. - checkArg arg flat = - let (args, res) = flat in - if not (null args) - then error $ "Passing lambda expression or function as a function argument not supported: " ++ (showSDoc $ ppr arg) - else flat - flattenExpr binds l@(Let (NonRec b bexpr) expr) = do (b_args, b_res) <- flattenExpr binds bexpr if not (null b_args) @@ -271,11 +267,12 @@ flattenExpr binds expr@(Case scrut b _ alts) = do -- TODO: Special casing for higher order functions -- Flatten the scrutinee (_, res) <- flattenExpr binds scrut + -- Put the scrutinee in the BindMap + let binds' = (b, Left res) : binds case alts of - -- TODO include b in the binds list - [alt] -> flattenSingleAltCaseExpr binds res b alt + [alt] -> flattenSingleAltCaseExpr binds' res b alt -- Reverse the alternatives, so the __DEFAULT alternative ends up last - otherwise -> flattenMultipleAltCaseExpr binds res b (reverse alts) + otherwise -> flattenMultipleAltCaseExpr binds' res b (reverse alts) where flattenSingleAltCaseExpr :: BindMap @@ -326,25 +323,20 @@ flattenExpr binds expr@(Case scrut b _ alts) = do (args', res') <- flattenMultipleAltCaseExpr binds scrut b (a':alts) case a of (DataAlt datacon, bind_vars, expr) -> do - if isDontCare datacon - then do - -- Completely skip the dontcare cases - return (args', res') - else do - lit <- dataConToLiteral datacon - -- The scrutinee must be a single signal - let Single sig = scrut - -- Create a signal that contains a boolean - boolsigid <- genSignalId SigInternal TysWiredIn.boolTy - addNameHint ("s" ++ show sig ++ "_eq_" ++ lit) boolsigid - let expr = EqLit sig lit - addDef (UncondDef (Right expr) boolsigid) - -- Create conditional assignments of either args/res or - -- args'/res based on boolsigid, and return the result. - -- TODO: It seems this adds the name hint twice? - our_args <- Monad.zipWithM (mkConditionals boolsigid) args args' - our_res <- mkConditionals boolsigid res res' - return (our_args, our_res) + lit <- dataConToLiteral datacon + -- The scrutinee must be a single signal + let Single sig = scrut + -- Create a signal that contains a boolean + boolsigid <- genSignalId SigInternal TysWiredIn.boolTy + addNameHint ("s" ++ show sig ++ "_eq_" ++ lit) boolsigid + let expr = EqLit sig lit + addDef (UncondDef (Right expr) boolsigid) + -- Create conditional assignments of either args/res or + -- args'/res based on boolsigid, and return the result. + -- TODO: It seems this adds the name hint twice? + our_args <- Monad.zipWithM (mkConditionals boolsigid) args args' + our_res <- mkConditionals boolsigid res res' + return (our_args, our_res) otherwise -> error $ "Case patterns other than data constructors not supported in case alternative: " ++ (showSDoc $ ppr a) where @@ -369,19 +361,35 @@ flattenExpr binds expr@(Case scrut b _ alts) = do flattenExpr _ expr = do error $ "Unsupported expression: " ++ (showSDoc $ ppr expr) --- | Is the given data constructor a dontcare? -isDontCare :: DataCon.DataCon -> Bool -isDontCare datacon = - case Name.getOccString tyname of - -- TODO: Do something more robust than string matching - "Bit" -> - Name.getOccString dcname == "DontCare" - otherwise -> - False - where - tycon = DataCon.dataConTyCon datacon - tyname = TyCon.tyConName tycon - dcname = DataCon.dataConName datacon +-- | Flatten a normal application expression +flattenApplicationExpr binds ty f args = do + -- Find the function to call + let func = appToHsFunction ty f args + -- Flatten each of our args + flat_args <- (mapM (flattenExpr binds) args) + -- Check and split each of the arguments + let (_, arg_ress) = unzip (zipWith checkArg args flat_args) + -- Generate signals for our result + res <- genSignals ty + -- Add name hints to the generated signals + let resname = Name.getOccString f ++ "_res" + Traversable.mapM (addNameHint resname) res + -- Create the function application + let app = FApp { + appFunc = func, + appArgs = arg_ress, + appRes = res + } + addDef app + return ([], res) +-- | Check a flattened expression to see if it is valid to use as a +-- function argument. The first argument is the original expression for +-- use in the error message. +checkArg arg flat = + let (args, res) = flat in + if not (null args) + then error $ "Passing lambda expression or function as a function argument not supported: " ++ (showSDoc $ ppr arg) + else flat -- | Translates a dataconstructor without arguments to the corresponding -- literal. @@ -393,7 +401,7 @@ dataConToLiteral datacon = do -- TODO: Do something more robust than string matching "Bit" -> do let dcname = DataCon.dataConName datacon - let lit = case Name.getOccString dcname of "High" -> "'1'"; "Low" -> "'0'"; "DontCare" -> "'-'" + let lit = case Name.getOccString dcname of "High" -> "'1'"; "Low" -> "'0'" return lit "Bool" -> do let dcname = DataCon.dataConName datacon @@ -437,28 +445,4 @@ stateList :: stateList uses signals = Maybe.catMaybes $ Foldable.toList $ zipValueMapsWith filterState signals uses --- | Returns pairs of signals that should be mapped to state in this function. -getOwnStates :: - HsFunction -- | The function to look at - -> FlatFunction -- | The function to look at - -> [(StateId, SignalInfo, SignalInfo)] - -- | The state signals. The first is the state number, the second the - -- signal to assign the current state to, the last is the signal - -- that holds the new state. - -getOwnStates hsfunc flatfunc = - [(old_num, old_info, new_info) - | (old_num, old_info) <- args_states - , (new_num, new_info) <- res_states - , old_num == new_num] - where - sigs = flat_sigs flatfunc - -- Translate args and res to lists of (statenum, sigid) - args = concat $ zipWith stateList (hsFuncArgs hsfunc) (flat_args flatfunc) - res = stateList (hsFuncRes hsfunc) (flat_res flatfunc) - -- Replace the second tuple element with the corresponding SignalInfo - args_states = map (Arrow.second $ signalInfo sigs) args - res_states = map (Arrow.second $ signalInfo sigs) res - - -- vim: set ts=8 sw=2 sts=2 expandtab: