From e67776927d42cbb75c109ddf013dca906ff97e4e Mon Sep 17 00:00:00 2001 From: Christiaan Baaij Date: Wed, 3 Mar 2010 15:19:27 +0100 Subject: [PATCH] Update abstract, include thanks --- "c\316\273ash.lhs" | 25 ++++++++++++++++--------- 1 file changed, 16 insertions(+), 9 deletions(-) diff --git "a/c\316\273ash.lhs" "b/c\316\273ash.lhs" index a9de945..a6bd1c2 100644 --- "a/c\316\273ash.lhs" +++ "b/c\316\273ash.lhs" @@ -400,7 +400,7 @@ Department of EEMCS, University of Twente\\ P.O. Box 217, 7500 AE, Enschede, The Netherlands\\ c.p.r.baaij@@utwente.nl, matthijs@@stdin.nl, j.kuper@@utwente.nl} -% \thanks{Supported through FP7 project: S(o)OS (248465)} +\thanks{Supported through the FP7 project: S(o)OS (248465)} } % \and % \IEEEauthorblockN{Homer Simpson} @@ -452,14 +452,21 @@ c.p.r.baaij@@utwente.nl, matthijs@@stdin.nl, j.kuper@@utwente.nl} \begin{abstract} %\boldmath \CLaSH\ is a functional hardware description language that borrows both its -syntax and semantics from the functional programming language Haskell. Circuit -descriptions can be translated to synthesizable VHDL using the prototype -\CLaSH\ compiler. As the circuit descriptions are made in plain Haskell, -simulations can also be compiled by a Haskell compiler. - -The use of polymorphism and higher-order functions allow a circuit designer to -describe more abstract and general specifications than are possible in the -traditional hardware description languages. +syntax and semantics from the functional programming language Haskell. Due to +the abstraction and generality offered by polymorphism and higher-order +functions, a circuit designer can describe circuits in a more natural way than +he could in the traditional hardware description languages. + +Circuit descriptions can be translated to synthesizable VHDL using the +prototype \CLaSH\ compiler. As the circuit descriptions, simulation code, and +test input are plain Haskell, complete simulations can be compiled to an +executable binary by a Haskell compiler allowing high-speed simulation and +analysis. + +Stateful descriptions are supported by explicitly making the current state an +argument of the function, and the updated state part of the result. In this +sense, the descriptions made in \CLaSH\ are the combinational parts of a mealy +machine. \end{abstract} % IEEEtran.cls defaults to using nonbold math in the Abstract. % This preserves the distinction between vectors and scalars. However, -- 2.30.2