From: Matthijs Kooijman Date: Mon, 29 Jun 2009 15:14:04 +0000 (+0200) Subject: Add and improve some transformations. X-Git-Tag: final-thesis~320 X-Git-Url: https://git.stderr.nl/gitweb?a=commitdiff_plain;h=c5928a5f3125abb89a1a9d09d7762d0ac12f95a9;p=matthijs%2Fmaster-project%2Freport.git Add and improve some transformations. --- diff --git a/Core2Core.tex b/Core2Core.tex index 051ddd6..384c84d 100644 --- a/Core2Core.tex +++ b/Core2Core.tex @@ -28,6 +28,15 @@ % A transformation \definefloat[transformation][transformations] \define[2]\transform{ + \startframedtext[width=\textwidth] + #2 + \stopframedtext +} + +\define\conclusion{\blackrule[height=0.5pt,depth=0pt,width=.5\textwidth]} +\define\nextrule{\vskip1cm} + +\define[2]\transformold{ %\placetransformation[here]{#1} \startframedtext[width=\textwidth] \startformula \startalign @@ -40,6 +49,7 @@ \installprettytype [LAM] [LAM] \definetyping[lambda][option=LAM,style=sans] +\definetype[lam][option=LAM,style=sans] % An (invisible) frame to hold a lambda expression \define[1]\lamframe{ @@ -51,7 +61,7 @@ \framed[offset=0mm,location=middle,strut=no,align=right,frame=off]{#1} } -\define[2]\trans{ +\define[2]\transbuf{ % Make \typebuffer uses the LAM pretty printer and a sans-serif font % Also prevent any extra spacing above and below caused by the default % before=\blank and after=\blank. @@ -67,6 +77,15 @@ % Reset the typing settings to their defaults \setuptyping[option=none,style=\tttf] } +% This is the same as \transbuf above, but it accepts text directly instead +% of through buffers. This only works for single lines, however. +\define[2]\trans{ + \dontleavehmode + \lamframe{\lam{#1}} + \lamframe{\Rightarrow} + \lamframe{\lam{#2}} +} + % A helper to print a single example in the half the page width. The example % text should be in a buffer whose name is given in an argument. @@ -74,7 +93,14 @@ % The align=right option really does left-alignment, but without the program % will end up on a single line. The strut=no option prevents a bunch of empty % space at the start of the frame. -\define[1]\example{\framed[frameoffset=2mm,align=right,strut=no]{\typebuffer[#1]}} +\define[1]\example{ + \framed[offset=1mm,align=right,strut=no]{ + \setuptyping[option=LAM,style=sans,before=,after=] + \typebuffer[#1] + \setuptyping[option=none,style=\tttf] + } +} + % A transformation example \definefloat[example][examples] @@ -89,11 +115,11 @@ } \define[3]\transexampleh{ - \placeexample[here]{#1} - \startcombination[1*2] - {\example{#2}}{Original program} - {\example{#3}}{Transformed program} - \stopcombination +% \placeexample[here]{#1} +% \startcombination[1*2] +% {\example{#2}}{Original program} +% {\example{#3}}{Transformed program} +% \stopcombination } % Define a custom description format for the builtinexprs below @@ -267,87 +293,94 @@ canonical form. \c d -> op' d c \stoptyping -\subsection{Argument extraction} -This transformation makes sure that all of a bindings arguments are always -bound to variables at the top level of the bound value. Formally, we can -describe this transformation as follows. +\subsection{η-abstraction} +This transformation makes sure that all arguments of a function-typed +expression are named, by introducing lambda expressions. When combined with +β-reduction and function inlining below, all function-typed expressions should +be lambda abstractions or global identifiers. -\transform{Argument extraction} +\transform{η-abstraction} { -\NC \app{transform}{\expr{\bind{f}{expr}}} \NC = \expr{\bind{f}{\app{transform'(expr)}}}\NR -\NR -\NC \app{transform'}{\expr{\lam{v}{expr}}} \NC = \expr{\lam{v}{\app{transform'}{expr}}}\NR -\NC \app{transform'}{\expr{expr :: a \xrightarrow b}} \NC = \expr{\lam{x}{\app{transform'}{\expr{(\app{expr}{x})}}}} \NR -} +\lam{E :: * -> *} -When applying this transformation to our running example, we get the following -program. +\lam{E} is not the first argument of an application. -\starttyping - \x c d -> - (let s = foo x - in - case s of - (a, b) -> - case a of - High -> add - Low -> let - op' = case b of - High -> sub - Low -> \c d -> c - in - \c d -> op' d c - ) c d -\stoptyping +\lam{E} is not a lambda abstraction. + +\lam{x} is a variable that does not occur free in E. + +\conclusion + +\trans{E}{λx.E x} +} \startbuffer[from] -foo = \x -> case x of True -> (\y -> mul y y); False -> id +foo = λa -> case a of + True -> λb.mul b b + False -> id \stopbuffer + \startbuffer[to] -foo = \x z -> (case x of True -> (\y -> mul y y); False -> id) z +foo = λa.λx -> (case a of + True -> λb.mul b b + False -> λy.id y) x \stopbuffer -\transexampleh{Argument extraction example}{from}{to} +\transexample{η-abstraction}{from}{to} -\subsection{Application propagation} +\subsection{Extended β-reduction} This transformation is meant to propagate application expressions downwards -into expressions as far as possible. Formally, we can describe this -transformation as follows. +into expressions as far as possible. In lambda calculus, this reduction +is known as β-reduction, but it is of course only defined for +applications of lambda abstractions. We extend this reduction to also +work for the rest of core (case and let expressions). +\startbuffer[from] +(case x of + p1 -> E1 + \vdots + pn -> En) M +\stopbuffer +\startbuffer[to] +case x of + p1 -> E1 M + \vdots + pn -> En M +\stopbuffer -\transform{Application propagation} +\transform{Extended β-reduction} { -\NC \app{transform}{\expr{\app{(\letexpr{binds}{expr})}{y}}} \NC = \expr{\letexpr{binds}{(\app{expr}{y})}}\NR -\NC \app{transform}{\expr{\app{(\lam{x}{expr})}{y}}} \NC = \app{\app{subs}{x \xRightarrow y}}{\expr{expr}}\NR -\NC \app{transform}{\expr{\app{(\case{x}{\alt{p}{e};...})}{y}}} \NC = \expr{\case{x}{\alt{p}{\app{e}{y}};...}}\;(for\;every\;alt)\NR -} +\conclusion +\trans{(λx.E) M}{E[M/x]} -When applying this transformation to our running example, we get the following -program. +\nextrule +\conclusion +\trans{(let binds in E) M}{let binds in E M} -\starttyping - \x c d -> - let s = foo x - in - case s of - (a, b) -> - case a of - High -> add c d - Low -> let - op' = case b of - High -> sub - Low -> \c d -> c - in - op' d c -\stoptyping +\nextrule +\conclusion +\transbuf{from}{to} +} \startbuffer[from] -foo = \x z -> (case x of True -> (\y -> mul y y); False -> id) z +let a = (case x of + True -> id + False -> neg + ) 1 + b = (let y = 3 in add y) 2 +in + (λz.add 1 z) 3 \stopbuffer + \startbuffer[to] -foo = \x z -> case x of True -> mul z z; False -> id z +let a = case x of + True -> id 1 + False -> neg 1 + b = let y = 3 in add y 2 +in + add 1 3 \stopbuffer -\transexampleh{Application propagation example}{from}{to} +\transexample{Extended β-reduction}{from}{to} \subsection{Introducing main scope} This transformation is meant to introduce a single let expression that will be @@ -358,7 +391,7 @@ this identifier (to comply with requirement \in[retexpr]). Formally, we can describe the transformation as follows. -\transform{Main scope introduction} +\transformold{Main scope introduction} { \NC \app{transform}{\expr{\bind{f}{expr}}} \NC = \expr{\bind{f}{\app{transform'(expr)}}}\NR \NR @@ -395,7 +428,7 @@ expressions only (so simplify deeply nested expressions). Formally, we can describe the transformation as follows. -\transform{Main scope introduction} { \NC \app{transform}{\expr{\bind{f}{expr}}} \NC = \expr{\bind{f}{\app{transform'(expr)}}}\NR +\transformold{Main scope introduction} { \NC \app{transform}{\expr{\bind{f}{expr}}} \NC = \expr{\bind{f}{\app{transform'(expr)}}}\NR \NR \NC \app{transform'}{\expr{\lam{v}{expr}}} \NC = \expr{\lam{v}{\app{transform'}{expr}}}\NR \NC \app{transform'}{\expr{\letexpr{binds}{expr}}} \NC = \expr{\letexpr{\app{concat . map . flatten}{binds}}{expr}}\NR