y = \overrightarrow x \bullet \overrightarrow h
\]
\[
- \overrightarrow x \bullet \overrightarrow h = \sum\nolimits_{i = 1}^n {a_1 \cdot b_1 + a_2 \cdot b_2 + \ldots + a_n \cdot b_n }
+ \overrightarrow x \bullet \overrightarrow h = {a_1 \cdot b_1 + a_2 \cdot b_2 + \ldots + a_n \cdot b_n }
\]
\end{frame}
\note[itemize]{
\begin{itemize}
\item Two steps to define: \\
\[
- \overrightarrow x \bullet \overrightarrow h = \sum\nolimits_{i = 1}^n {a_1 \cdot b_1 + a_2 \cdot b_2 + \ldots + a_n \cdot b_n }
+ \overrightarrow x \bullet \overrightarrow h = {a_1 \cdot b_1 + a_2 \cdot b_2 + \ldots + a_n \cdot b_n }
\]
\begin{itemize}
\item \emph{Pairwise Multiplication}: \\
\begin{itemize}
\item Two steps to define: \\
\[
- \overrightarrow x \bullet \overrightarrow h = \sum\nolimits_{i = 1}^n {a_1 \cdot b_1 + a_2 \cdot b_2 + \ldots + a_n \cdot b_n }
+ \overrightarrow x \bullet \overrightarrow h = {a_1 \cdot b_1 + a_2 \cdot b_2 + \ldots + a_n \cdot b_n }
\]
\begin{itemize}
\item \emph{Combine the two}: \\
\note[itemize]{
\item Samen vormen deze operaties dus het inproduct.
\item Next sheet: code FIR filter
-}
\ No newline at end of file
+}