\subsubsection{Other concepts}
A \emph{global variable} is any variable that is bound at the
-top level of a program, or an external module. A local variable is any other
-variable (\eg, variables local to a function, which can be bound by lambda
-abstractions, let expressions and case expressions).
-
-A \emph{hardware representable} type is a type that we can generate
-a signal for in hardware. For example, a bit, a vector of bits, a 32 bit
-unsigned word, etc. Types that are not runtime representable notably
-include (but are not limited to): Types, dictionaries, functions.
-
-A \emph{builtin function} is a function for which a builtin
-hardware translation is available, because its actual definition is not
-translatable. A user-defined function is any other function.
+top level of a program, or an external module. A \emph{local variable} is any
+other variable (\eg, variables local to a function, which can be bound by
+lambda abstractions, let expressions and pattern matches of case
+alternatives). Note that this is a slightly different notion of global versus
+local than what \small{GHC} uses internally.
+\defref{global variable} \defref{local variable}
+
+A \emph{hardware representable} (or just \emph{representable}) type or value
+is (a value of) a type that we can generate a signal for in hardware. For
+example, a bit, a vector of bits, a 32 bit unsigned word, etc. Types that are
+not runtime representable notably include (but are not limited to): Types,
+dictionaries, functions.
+\defref{representable}
+
+A \emph{builtin function} is a function supplied by the Cλash framework, whose
+implementation is not valid Cλash. The implementation is of course valid
+Haskell, for simulation, but it is not expressable in Cλash.
+\defref{builtin function} \defref{user-defined function}
+
+For these functions, Cλash has a \emph{builtin hardware translation}, so calls
+to these functions can still be translated. These are functions like
+\lam{map}, \lam{hwor} and \lam{length}.
+
+A \emph{user-defined} function is a function for which we do have a Cλash
+implementation available.
\subsubsection{Functions}
Here, we define a number of functions that can be used below to concisely
specify conditions.
-\emph{gvar(expr)} is true when \emph{expr} is a variable that references a
+\refdef{global variable}\emph{gvar(expr)} is true when \emph{expr} is a variable that references a
global variable. It is false when it references a local variable.
-\emph{lvar(expr)} is the inverse of \emph{gvar}; it is true when \emph{expr}
+\refdef{local variable}\emph{lvar(expr)} is the complement of \emph{gvar}; it is true when \emph{expr}
references a local variable, false when it references a global variable.
-\emph{representable(expr)} or \emph{representable(var)} is true when
-\emph{expr} or \emph{var} has a type that is representable at runtime.
+\refdef{representable}\emph{representable(expr)} or \emph{representable(var)} is true when
+\emph{expr} or \emph{var} is \emph{representable}.
\subsection{Binder uniqueness}
A common problem in transformation systems, is binder uniqueness. When not