TODO: Describe core properties not supported in VHDL, and describe how the
VHDL we want to generate should look like.
-\section{Goal}
+\section{Normal form}
The transformations described here have a well-defined goal: To bring the
program in a well-defined form that is directly translatable to hardware,
-while fully preserving the semantics of the program.
-
-This {\em normal form} is again a Core program, but with a very specific
-structure. A function in normal form has nested lambda's at the top, which
-produce a number of nested let expressions. These let expressions binds a
-number of simple expressions in the function and produces a simple identifier.
-Every bound value in the let expression is either a simple function
-application, a case expression to extract a single element from a tuple
-returned by a function or a case expression to choose between two signals
-based on some other signal.
-
-This structure is easy to translate to VHDL, since each top level lambda will
-be an input port, every bound value will become a concurrent statement (such
-as a component instantiation or conditional signal assignment) and the result
-variable will become the output port.
+while fully preserving the semantics of the program. We refer to this form as
+the \emph{normal form} of the program. The formal definition of this normal
+form is quite simple:
+
+\placedefinition{}{A program is in \emph{normal form} if none of the
+transformations from this chapter apply.}
+
+Of course, this is an \quote{easy} definition of the normal form, since our
+program will end up in normal form automatically. The more interesting part is
+to see if this normal form actually has the properties we would like it to
+have.
+
+But, before getting into more definitions and details about this normal form,
+let's try to get a feeling for it first. The easiest way to do this is by
+describing the things we want to not have in a normal form.
+
+\startitemize
+ \item Any \emph{polymorphism} must be removed. When laying down hardware, we
+ can't generate any signals that can have multiple types. All types must be
+ completely known to generate hardware.
+
+ \item Any \emph{higher order} constructions must be removed. We can't
+ generate a hardware signal that contains a function, so all values,
+ arguments and returns values used must be first order.
+
+ \item Any complex \emph{nested scopes} must be removed. In the VHDL
+ description, every signal is in a single scope. Also, full expressions are
+ not supported everywhere (in particular port maps can only map signal names,
+ not expressions). To make the VHDL generation easy, all values must be bound
+ on the \quote{top level}.
+\stopitemize
+
+TODO: Intermezzo: functions vs plain values
+
+A very simple example of a program in normal form is given in
+\in{example}[ex:MulSum]. As you can see, all arguments to the function (which
+will become input ports in the final hardware) are at the top. This means that
+the body of the final lambda abstraction is never a function, but always a
+plain value.
+
+After the lambda abstractions, we see a single let expression, that binds two
+variables (\lam{mul} and \lam{sum}). These variables will be signals in the
+final hardware, bound to the output port of the \lam{*} and \lam{+}
+components.
+
+The final line (the \quote{return value} of the function) selects the
+\lam{sum} signal to be the output port of the function. This \quote{return
+value} can always only be a variable reference, never a more complex
+expression.
\startbuffer[MulSum]
alu :: Bit -> Word -> Word -> Word
ncline(add)(sum);
\stopuseMPgraphic
-\placeexample[ex:MulSum]{\small{ALU} described in normal form}
+\placeexample[here][ex:MulSum]{Simple architecture consisting of an adder and a
+subtractor.}
\startcombination[2*1]
- {\typebufferlam{MulSum}}{Description in normal form}
- {\boxedgraphic{MulSum}}{Described architecture}
+ {\typebufferlam{MulSum}}{Core description in normal form.}
+ {\boxedgraphic{MulSum}}{The architecture described by the normal form.}
\stopcombination
+The previous example described composing an architecture by calling other
+functions (operators), resulting in a simple architecture with component and
+connection. There is of course also some mechanism for choice in the normal
+form. In a normal Core program, the \emph{case} expression can be used in a
+few different ways to describe choice. In normal form, this is limited to a
+very specific form.
+
+\in{Example}[ex:AddSubAlu] shows an example describing a
+simple \small{ALU}, which chooses between two operations based on an opcode
+bit. The main structure is the same as in \in{example}[ex:MulSum], but this
+time the \lam{res} variable is bound to a case expression. This case
+expression scrutinizes the variable \lam{opcode} (and scrutinizing more
+complex expressions is not supported). The case expression can select a
+different variable based on the constructor of \lam{opcode}.
+
\startbuffer[AddSubAlu]
alu :: Bit -> Word -> Word -> Word
alu = λopcode.λa.λb.
let
res1 = (+) a b
res2 = (-) a b
- res = case op of
+ res = case opcode of
Low -> res1
High -> res2
in
ncline(mux)(res) "posA(out)";
\stopuseMPgraphic
-\placeexample[ex:AddSubAlu]{\small{ALU} described in normal form}
+\placeexample[here][ex:AddSubAlu]{Simple \small{ALU} supporting two operations.}
\startcombination[2*1]
- {\typebufferlam{AddSubAlu}}{Description in normal form}
- {\boxedgraphic{AddSubAlu}}{Described architecture}
+ {\typebufferlam{AddSubAlu}}{Core description in normal form.}
+ {\boxedgraphic{AddSubAlu}}{The architecture described by the normal form.}
\stopcombination
-\startlambda
+As a more complete example, consider \in{example}[ex:NormalComplete]. This
+example contains everything that is supported in normal form, with the
+exception of builtin higher order functions.
+
+\startbuffer[NormalComplete]
+ regbank :: Bit
+ -> Word
+ -> State (Word, Word)
+ -> (State (Word, Word), Word)
+
-- All arguments are an inital lambda
- λa.λd.λsp.
+ regbank = λa.λd.λsp.
-- There are nested let expressions at top level
let
- -- Unpack the state by coercion
+ -- Unpack the state by coercion (\eg, cast from
+ -- State (Word, Word) to (Word, Word))
s = sp :: (Word, Word)
-- Extract both registers from the state
r1 = case s of (fst, snd) -> fst
High -> r1
Low -> r2
r1' = case a of
- High -> d
+ High -> d'
Low -> r1
r2' = case a of
High -> r2
- Low -> d
+ Low -> d'
-- Packing a tuple
s' = (,) r1' r2'
- -- Packing the state by coercion
+ -- pack the state by coercion (\eg, cast from
+ -- (Word, Word) to State (Word, Word))
sp' = s' :: State (Word, Word)
-- Pack our return value
res = (,) sp' out
in
-- The actual result
res
+\stopbuffer
+
+\startuseMPgraphic{NormalComplete}
+ save a, d, r, foo, muxr, muxout, out;
+
+ % I/O ports
+ newCircle.a(btex \lam{a} etex) "framed(false)";
+ newCircle.d(btex \lam{d} etex) "framed(false)";
+ newCircle.out(btex \lam{out} etex) "framed(false)";
+ % Components
+ %newCircle.add(btex + etex);
+ newBox.foo(btex \lam{foo} etex);
+ newReg.r1(btex $\lam{r1}$ etex) "dx(4mm)", "dy(6mm)";
+ newReg.r2(btex $\lam{r2}$ etex) "dx(4mm)", "dy(6mm)", "reflect(true)";
+ newMux.muxr1;
+ % Reflect over the vertical axis
+ reflectObj(muxr1)((0,0), (0,1));
+ newMux.muxr2;
+ newMux.muxout;
+ rotateObj(muxout)(-90);
+
+ d.c = foo.c + (0cm, 1.5cm);
+ a.c = (xpart r2.c + 2cm, ypart d.c - 0.5cm);
+ foo.c = midpoint(muxr1.c, muxr2.c) + (0cm, 2cm);
+ muxr1.c = r1.c + (0cm, 2cm);
+ muxr2.c = r2.c + (0cm, 2cm);
+ r2.c = r1.c + (4cm, 0cm);
+ r1.c = origin;
+ muxout.c = midpoint(r1.c, r2.c) - (0cm, 2cm);
+ out.c = muxout.c - (0cm, 1.5cm);
+
+% % Draw objects and lines
+ drawObj(a, d, foo, r1, r2, muxr1, muxr2, muxout, out);
+
+ ncline(d)(foo);
+ nccurve(foo)(muxr1) "angleA(-90)", "posB(inpa)", "angleB(180)";
+ nccurve(foo)(muxr2) "angleA(-90)", "posB(inpb)", "angleB(0)";
+ nccurve(muxr1)(r1) "posA(out)", "angleA(180)", "posB(d)", "angleB(0)";
+ nccurve(r1)(muxr1) "posA(out)", "angleA(0)", "posB(inpb)", "angleB(180)";
+ nccurve(muxr2)(r2) "posA(out)", "angleA(0)", "posB(d)", "angleB(180)";
+ nccurve(r2)(muxr2) "posA(out)", "angleA(180)", "posB(inpa)", "angleB(0)";
+ nccurve(r1)(muxout) "posA(out)", "angleA(0)", "posB(inpb)", "angleB(-90)";
+ nccurve(r2)(muxout) "posA(out)", "angleA(180)", "posB(inpa)", "angleB(-90)";
+ % Connect port a
+ nccurve(a)(muxout) "angleA(-90)", "angleB(180)", "posB(sel)";
+ nccurve(a)(muxr1) "angleA(180)", "angleB(-90)", "posB(sel)";
+ nccurve(a)(muxr2) "angleA(180)", "angleB(-90)", "posB(sel)";
+ ncline(muxout)(out) "posA(out)";
+\stopuseMPgraphic
+
+\placeexample[here][ex:NormalComplete]{Simple architecture consisting of an adder and a
+subtractor.}
+ \startcombination[2*1]
+ {\typebufferlam{NormalComplete}}{Core description in normal form.}
+ {\boxedgraphic{NormalComplete}}{The architecture described by the normal form.}
+ \stopcombination
+
+\subsection{Normal form definition}
+Now we have some intuition for the normal form, we can describe how we want
+the normal form to look like in a slightly more formal manner. The following
+EBNF-like description completely captures the intended structure (and
+generates a subset of GHC's core format).
+
+Some clauses have an expression listed in parentheses. These are conditions
+that need to apply to the clause.
+
+\startlambda
+\italic{normal} = \italic{lambda}
+\italic{lambda} = λvar.\italic{lambda} (representable(var))
+ | \italic{toplet}
+\italic{toplet} = let \italic{binding} in \italic{toplet}
+ | letrec [\italic{binding}] in \italic{toplet}
+ | var (representable(varvar))
+\italic{binding} = var = \italic{rhs} (representable(rhs))
+ -- State packing and unpacking by coercion
+ | var0 = var1 :: State ty (lvar(var1))
+ | var0 = var1 :: ty (var0 :: State ty) (lvar(var1))
+\italic{rhs} = userapp
+ | builtinapp
+ -- Extractor case
+ | case var of C a0 ... an -> ai (lvar(var))
+ -- Selector case
+ | case var of (lvar(var))
+ DEFAULT -> var0 (lvar(var0))
+ C w0 ... wn -> resvar (\forall{}i, wi \neq resvar, lvar(resvar))
+\italic{userapp} = \italic{userfunc}
+ | \italic{userapp} {userarg}
+\italic{userfunc} = var (gvar(var))
+\italic{userarg} = var (lvar(var))
+\italic{builtinapp} = \italic{builtinfunc}
+ | \italic{builtinapp} \italic{builtinarg}
+\italic{builtinfunc} = var (bvar(var))
+\italic{builtinarg} = \italic{coreexpr}
\stoplambda
+-- TODO: Limit builtinarg further
+
+-- TODO: There can still be other casts around (which the code can handle,
+e.g., ignore), which still need to be documented here.
+
+-- TODO: Note about the selector case. It just supports Bit and Bool
+currently, perhaps it should be generalized in the normal form?
+
+When looking at such a program from a hardware perspective, the top level
+lambda's define the input ports. The value produced by the let expression is
+the output port. Most function applications bound by the let expression
+define a component instantiation, where the input and output ports are mapped
+to local signals or arguments. Some of the others use a builtin
+construction (\eg the \lam{case} statement) or call a builtin function
+(\eg \lam{add} or \lam{sub}). For these, a hardcoded VHDL translation is
+available.
+
\subsection{Definitions}
In the following sections, we will be using a number of functions and
notations, which we will define here.
\emph{representable(expr)} or \emph{representable(var)} is true when
\emph{expr} or \emph{var} has a type that is representable at runtime.
-\subsection{Normal form definition}
-We can describe this normal form in a slightly more formal manner. The
-following EBNF-like description completely captures the intended structure
-(and generates a subset of GHC's core format).
-
-Some clauses have an expression listed in parentheses. These are conditions
-that need to apply to the clause.
-
-\startlambda
-\italic{normal} = \italic{lambda}
-\italic{lambda} = λvar.\italic{lambda} (representable(var))
- | \italic{toplet}
-\italic{toplet} = let \italic{binding} in \italic{toplet}
- | letrec [\italic{binding}] in \italic{toplet}
- | var (representable(varvar))
-\italic{binding} = var = \italic{rhs} (representable(rhs))
- -- State packing and unpacking by coercion
- | var0 = var1 :: State ty (lvar(var1))
- | var0 = var1 :: ty (var0 :: State ty) (lvar(var1))
-\italic{rhs} = userapp
- | builtinapp
- -- Extractor case
- | case var of C a0 ... an -> ai (lvar(var))
- -- Selector case
- | case var of (lvar(var))
- DEFAULT -> var0 (lvar(var0))
- C w0 ... wn -> resvar (\forall{}i, wi \neq resvar, lvar(resvar))
-\italic{userapp} = \italic{userfunc}
- | \italic{userapp} {userarg}
-\italic{userfunc} = var (gvar(var))
-\italic{userarg} = var (lvar(var))
-\italic{builtinapp} = \italic{builtinfunc}
- | \italic{builtinapp} \italic{builtinarg}
-\italic{builtinfunc} = var (bvar(var))
-\italic{builtinarg} = \italic{coreexpr}
-\stoplambda
-
--- TODO: Limit builtinarg further
-
--- TODO: There can still be other casts around (which the code can handle,
-e.g., ignore), which still need to be documented here.
-
--- TODO: Note about the selector case. It just supports Bit and Bool
-currently, perhaps it should be generalized in the normal form?
-
-When looking at such a program from a hardware perspective, the top level
-lambda's define the input ports. The value produced by the let expression is
-the output port. Most function applications bound by the let expression
-define a component instantiation, where the input and output ports are mapped
-to local signals or arguments. Some of the others use a builtin
-construction (\eg the \lam{case} statement) or call a builtin function
-(\eg \lam{add} or \lam{sub}). For these, a hardcoded VHDL translation is
-available.
-
\section{Transform passes}
In this section we describe the actual transforms. Here we're using
the core language in a notation that resembles lambda calculus.