X-Git-Url: https://git.stderr.nl/gitweb?a=blobdiff_plain;f=c%CE%BBash%2FCLasH%2FVHDL%2FGenerate.hs;h=07cf0e89864022936af27fa5c9f0fd6cb6719ecc;hb=07a6394442d0d83a754af8f0d90f3702bb1821c6;hp=448308613a9df0b89a03965defb504112346a28b;hpb=4ae6d0942205c704ef4c15a8ffd9398fd9f7ca53;p=matthijs%2Fmaster-project%2Fc%CE%BBash.git diff --git "a/c\316\273ash/CLasH/VHDL/Generate.hs" "b/c\316\273ash/CLasH/VHDL/Generate.hs" index 4483086..07cf0e8 100644 --- "a/c\316\273ash/CLasH/VHDL/Generate.hs" +++ "b/c\316\273ash/CLasH/VHDL/Generate.hs" @@ -1,31 +1,306 @@ module CLasH.VHDL.Generate where -- Standard modules +import qualified Data.List as List import qualified Data.Map as Map +import qualified Control.Monad as Monad import qualified Maybe import qualified Data.Either as Either -import Data.Accessor -import Data.Accessor.MonadState as MonadState -import Debug.Trace +import qualified Data.Accessor.Monad.Trans.State as MonadState --- ForSyDe +-- VHDL Imports import qualified Language.VHDL.AST as AST -- GHC API import qualified CoreSyn import qualified Type import qualified Var +import qualified Id import qualified IdInfo import qualified Literal import qualified Name import qualified TyCon -- Local imports +import CLasH.Translator.TranslatorTypes import CLasH.VHDL.Constants import CLasH.VHDL.VHDLTypes import CLasH.VHDL.VHDLTools +import CLasH.Utils import CLasH.Utils.Core.CoreTools import CLasH.Utils.Pretty +import qualified CLasH.Normalize as Normalize + +----------------------------------------------------------------------------- +-- Functions to generate VHDL for user-defined functions. +----------------------------------------------------------------------------- + +-- | Create an entity for a given function +getEntity :: + CoreSyn.CoreBndr + -> TranslatorSession Entity -- ^ The resulting entity + +getEntity fname = makeCached fname tsEntities $ do + expr <- Normalize.getNormalized False fname + -- Split the normalized expression + let (args, binds, res) = Normalize.splitNormalized expr + -- Generate ports for all non-empty types + args' <- catMaybesM $ mapM mkMap args + -- TODO: Handle Nothing + res' <- mkMap res + count <- MonadState.get tsEntityCounter + let vhdl_id = mkVHDLBasicId $ varToString fname ++ "Component_" ++ show count + MonadState.set tsEntityCounter (count + 1) + let ent_decl = createEntityAST vhdl_id args' res' + let signature = Entity vhdl_id args' res' ent_decl + return signature + where + mkMap :: + --[(SignalId, SignalInfo)] + CoreSyn.CoreBndr + -> TranslatorSession (Maybe Port) + mkMap = (\bndr -> + let + --info = Maybe.fromMaybe + -- (error $ "Signal not found in the name map? This should not happen!") + -- (lookup id sigmap) + -- Assume the bndr has a valid VHDL id already + id = varToVHDLId bndr + ty = Var.varType bndr + error_msg = "\nVHDL.createEntity.mkMap: Can not create entity: " ++ pprString fname ++ "\nbecause no type can be created for port: " ++ pprString bndr + in do + type_mark_maybe <- MonadState.lift tsType $ vhdlTy error_msg ty + case type_mark_maybe of + Just type_mark -> return $ Just (id, type_mark) + Nothing -> return Nothing + ) + +-- | Create the VHDL AST for an entity +createEntityAST :: + AST.VHDLId -- ^ The name of the function + -> [Port] -- ^ The entity's arguments + -> Maybe Port -- ^ The entity's result + -> AST.EntityDec -- ^ The entity with the ent_decl filled in as well + +createEntityAST vhdl_id args res = + AST.EntityDec vhdl_id ports + where + -- Create a basic Id, since VHDL doesn't grok filenames with extended Ids. + ports = map (mkIfaceSigDec AST.In) args + ++ (Maybe.maybeToList res_port) + ++ [clk_port,resetn_port] + -- Add a clk port if we have state + clk_port = AST.IfaceSigDec clockId AST.In std_logicTM + resetn_port = AST.IfaceSigDec resetId AST.In std_logicTM + res_port = fmap (mkIfaceSigDec AST.Out) res + +-- | Create a port declaration +mkIfaceSigDec :: + AST.Mode -- ^ The mode for the port (In / Out) + -> Port -- ^ The id and type for the port + -> AST.IfaceSigDec -- ^ The resulting port declaration + +mkIfaceSigDec mode (id, ty) = AST.IfaceSigDec id mode ty + +-- | Create an architecture for a given function +getArchitecture :: + CoreSyn.CoreBndr -- ^ The function to get an architecture for + -> TranslatorSession (Architecture, [CoreSyn.CoreBndr]) + -- ^ The architecture for this function + +getArchitecture fname = makeCached fname tsArchitectures $ do + expr <- Normalize.getNormalized False fname + -- Split the normalized expression + let (args, binds, res) = Normalize.splitNormalized expr + + -- Get the entity for this function + signature <- getEntity fname + let entity_id = ent_id signature + + -- Create signal declarations for all binders in the let expression, except + -- for the output port (that will already have an output port declared in + -- the entity). + sig_dec_maybes <- mapM (mkSigDec . fst) (filter ((/=res).fst) binds) + let sig_decs = Maybe.catMaybes sig_dec_maybes + -- Process each bind, resulting in info about state variables and concurrent + -- statements. + (state_vars, sms) <- Monad.mapAndUnzipM dobind binds + let (in_state_maybes, out_state_maybes) = unzip state_vars + let (statementss, used_entitiess) = unzip sms + -- Get initial state, if it's there + initSmap <- MonadState.get tsInitStates + let init_state = Map.lookup fname initSmap + -- Create a state proc, if needed + (state_proc, resbndr) <- case (Maybe.catMaybes in_state_maybes, Maybe.catMaybes out_state_maybes, init_state) of + ([in_state], [out_state], Nothing) -> do + nonEmpty <- hasNonEmptyType in_state + if nonEmpty + then error ("No initial state defined for: " ++ show fname) + else return ([],[]) + ([in_state], [out_state], Just resetval) -> do + nonEmpty <- hasNonEmptyType in_state + if nonEmpty + then mkStateProcSm (in_state, out_state, resetval) + else error ("Initial state defined for function with only substate: " ++ show fname) + ([], [], Just _) -> error $ "Initial state defined for state-less function: " ++ show fname + ([], [], Nothing) -> return ([],[]) + (ins, outs, res) -> error $ "Weird use of state in " ++ show fname ++ ". In: " ++ show ins ++ " Out: " ++ show outs + -- Join the create statements and the (optional) state_proc + let statements = concat statementss ++ state_proc + -- Create the architecture + let arch = AST.ArchBody (mkVHDLBasicId "structural") (AST.NSimple entity_id) (map AST.BDISD sig_decs) statements + let used_entities = (concat used_entitiess) ++ resbndr + return (arch, used_entities) + where + dobind :: (CoreSyn.CoreBndr, CoreSyn.CoreExpr) -- ^ The bind to process + -> TranslatorSession ((Maybe CoreSyn.CoreBndr, Maybe CoreSyn.CoreBndr), ([AST.ConcSm], [CoreSyn.CoreBndr])) + -- ^ ((Input state variable, output state variable), (statements, used entities)) + -- newtype unpacking is just a cast + dobind (bndr, unpacked@(CoreSyn.Cast packed coercion)) + | hasStateType packed && not (hasStateType unpacked) + = return ((Just bndr, Nothing), ([], [])) + -- With simplCore, newtype packing is just a cast + dobind (bndr, packed@(CoreSyn.Cast unpacked@(CoreSyn.Var state) coercion)) + | hasStateType packed && not (hasStateType unpacked) + = return ((Nothing, Just state), ([], [])) + -- Without simplCore, newtype packing uses a data constructor + dobind (bndr, (CoreSyn.App (CoreSyn.App (CoreSyn.Var con) (CoreSyn.Type _)) (CoreSyn.Var state))) + | isStateCon con + = return ((Nothing, Just state), ([], [])) + -- Anything else is handled by mkConcSm + dobind bind = do + sms <- mkConcSm bind + return ((Nothing, Nothing), sms) + +mkStateProcSm :: + (CoreSyn.CoreBndr, CoreSyn.CoreBndr, CoreSyn.CoreBndr) -- ^ The current state, new state and reset variables + -> TranslatorSession ([AST.ConcSm], [CoreSyn.CoreBndr]) -- ^ The resulting statements +mkStateProcSm (old, new, res) = do + let error_msg = "\nVHDL.mkSigDec: Can not make signal declaration for type: \n" ++ pprString res + type_mark_old_maybe <- MonadState.lift tsType $ vhdlTy error_msg (Var.varType old) + let type_mark_old = Maybe.fromMaybe + (error $ "\nGenerate.mkStateProcSm: empty type for state? Type: " ++ pprString (Var.varType old)) + type_mark_old_maybe + type_mark_res_maybe <- MonadState.lift tsType $ vhdlTy error_msg (Var.varType res) + let type_mark_res' = Maybe.fromMaybe + (error $ "\nGenerate.mkStateProcSm: empty type for initial state? Type: " ++ pprString (Var.varType res)) + type_mark_res_maybe + let type_mark_res = if type_mark_old == type_mark_res' then + type_mark_res' + else + error $ "Initial state has different type than state type, state type: " ++ show type_mark_old ++ ", init type: " ++ show type_mark_res' + let resvalid = mkVHDLExtId $ varToString res ++ "val" + let resvaldec = AST.BDISD $ AST.SigDec resvalid type_mark_res Nothing + let reswform = AST.Wform [AST.WformElem (AST.PrimName $ AST.NSimple resvalid) Nothing] + let res_assign = AST.SigAssign (varToVHDLName old) reswform + let blocklabel = mkVHDLBasicId "state" + let statelabel = mkVHDLBasicId "stateupdate" + let rising_edge = AST.NSimple $ mkVHDLBasicId "rising_edge" + let wform = AST.Wform [AST.WformElem (AST.PrimName $ varToVHDLName new) Nothing] + let clk_assign = AST.SigAssign (varToVHDLName old) wform + let rising_edge_clk = AST.PrimFCall $ AST.FCall rising_edge [Nothing AST.:=>: (AST.ADName $ AST.NSimple clockId)] + let resetn_is_low = (AST.PrimName $ AST.NSimple resetId) AST.:=: (AST.PrimLit "'0'") + signature <- getEntity res + let entity_id = ent_id signature + let reslabel = "resetval_" ++ ((prettyShow . varToVHDLName) res) + let portmaps = mkAssocElems [] (AST.NSimple resvalid) signature + let reset_statement = mkComponentInst reslabel entity_id portmaps + let clk_statement = [AST.ElseIf rising_edge_clk [clk_assign]] + let statement = AST.IfSm resetn_is_low [res_assign] clk_statement Nothing + let stateupdate = AST.CSPSm $ AST.ProcSm statelabel [clockId,resetId,resvalid] [statement] + let block = AST.CSBSm $ AST.BlockSm blocklabel [] (AST.PMapAspect []) [resvaldec] [reset_statement,stateupdate] + return ([block],[res]) + +-- | Transforms a core binding into a VHDL concurrent statement +mkConcSm :: + (CoreSyn.CoreBndr, CoreSyn.CoreExpr) -- ^ The binding to process + -> TranslatorSession ([AST.ConcSm], [CoreSyn.CoreBndr]) + -- ^ The corresponding VHDL concurrent statements and entities + -- instantiated. + + +-- Ignore Cast expressions, they should not longer have any meaning as long as +-- the type works out. Throw away state repacking +mkConcSm (bndr, to@(CoreSyn.Cast from ty)) + | hasStateType to && hasStateType from + = return ([],[]) +mkConcSm (bndr, CoreSyn.Cast expr ty) = mkConcSm (bndr, expr) + +-- Simple a = b assignments are just like applications, but without arguments. +-- We can't just generate an unconditional assignment here, since b might be a +-- top level binding (e.g., a function with no arguments). +mkConcSm (bndr, CoreSyn.Var v) = + genApplication (Left bndr) v [] + +mkConcSm (bndr, app@(CoreSyn.App _ _))= do + let (CoreSyn.Var f, args) = CoreSyn.collectArgs app + let valargs = get_val_args (Var.varType f) args + genApplication (Left bndr) f (map Left valargs) + +-- A single alt case must be a selector. This means the scrutinee is a simple +-- variable, the alternative is a dataalt with a single non-wild binder that +-- is also returned. +mkConcSm (bndr, expr@(CoreSyn.Case (CoreSyn.Var scrut) b ty [alt])) + -- Don't generate VHDL for substate extraction + | hasStateType bndr = return ([], []) + | otherwise = + case alt of + (CoreSyn.DataAlt dc, bndrs, (CoreSyn.Var sel_bndr)) -> do + nonemptysel <- hasNonEmptyType sel_bndr + if nonemptysel + then do + bndrs' <- Monad.filterM hasNonEmptyType bndrs + case List.elemIndex sel_bndr bndrs' of + Just i -> do + htypeScrt <- MonadState.lift tsType $ mkHTypeEither (Var.varType scrut) + htypeBndr <- MonadState.lift tsType $ mkHTypeEither (Var.varType bndr) + case htypeScrt == htypeBndr of + True -> do + let sel_name = varToVHDLName scrut + let sel_expr = AST.PrimName sel_name + return ([mkUncondAssign (Left bndr) sel_expr], []) + otherwise -> + case htypeScrt of + Right (AggrType _ _) -> do + labels <- MonadState.lift tsType $ getFieldLabels (Id.idType scrut) + let label = labels!!i + let sel_name = mkSelectedName (varToVHDLName scrut) label + let sel_expr = AST.PrimName sel_name + return ([mkUncondAssign (Left bndr) sel_expr], []) + _ -> do -- error $ "DIE!" + let sel_name = varToVHDLName scrut + let sel_expr = AST.PrimName sel_name + return ([mkUncondAssign (Left bndr) sel_expr], []) + Nothing -> error $ "\nVHDL.mkConcSM: Not in normal form: Not a selector case: result is not one of the binders\n" ++ (pprString expr) + else + -- A selector case that selects a state value, ignore it. + return ([], []) + + _ -> error $ "\nVHDL.mkConcSM: Not in normal form: Not a selector case:\n" ++ (pprString expr) + +-- Multiple case alt are be conditional assignments and have only wild +-- binders in the alts and only variables in the case values and a variable +-- for a scrutinee. We check the constructor of the second alt, since the +-- first is the default case, if there is any. + +-- mkConcSm (bndr, (CoreSyn.Case (CoreSyn.Var scrut) b ty [(_, _, CoreSyn.Var false), (con, _, CoreSyn.Var true)])) = do +-- scrut' <- MonadState.lift tsType $ varToVHDLExpr scrut +-- altcon <- MonadState.lift tsType $ altconToVHDLExpr con +-- let cond_expr = scrut' AST.:=: altcon +-- true_expr <- MonadState.lift tsType $ varToVHDLExpr true +-- false_expr <- MonadState.lift tsType $ varToVHDLExpr false +-- return ([mkCondAssign (Left bndr) cond_expr true_expr false_expr], []) +mkConcSm (bndr, (CoreSyn.Case (CoreSyn.Var scrut) _ _ (alt:alts))) = do --error "\nVHDL.mkConcSm: Not in normal form: Case statement with more than two alternatives" + scrut' <- MonadState.lift tsType $ varToVHDLExpr scrut + -- Omit first condition, which is the default + altcons <- MonadState.lift tsType $ mapM (altconToVHDLExpr . (\(con,_,_) -> con)) alts + let cond_exprs = map (\x -> scrut' AST.:=: x) altcons + -- Rotate expressions to the left, so that the expression related to the default case is the last + exprs <- MonadState.lift tsType $ mapM (varToVHDLExpr . (\(_,_,CoreSyn.Var expr) -> expr)) (alts ++ [alt]) + return ([mkAltsAssign (Left bndr) cond_exprs exprs], []) + +mkConcSm (_, CoreSyn.Case _ _ _ _) = error "\nVHDL.mkConcSm: Not in normal form: Case statement does not have a simple variable as scrutinee" +mkConcSm (bndr, expr) = error $ "\nVHDL.mkConcSM: Unsupported binding in let expression: " ++ pprString bndr ++ " = " ++ pprString expr ----------------------------------------------------------------------------- -- Functions to generate VHDL for builtin functions @@ -34,124 +309,198 @@ import CLasH.Utils.Pretty -- | A function to wrap a builder-like function that expects its arguments to -- be expressions. genExprArgs wrap dst func args = do - args' <- eitherCoreOrExprArgs args + args' <- argsToVHDLExprs args wrap dst func args' -eitherCoreOrExprArgs :: [Either CoreSyn.CoreExpr AST.Expr] -> VHDLSession [AST.Expr] -eitherCoreOrExprArgs args = mapM (Either.either ((MonadState.lift vsType) . varToVHDLExpr . exprToVar) return) args +-- | Turn the all lefts into VHDL Expressions. +argsToVHDLExprs :: [Either CoreSyn.CoreExpr AST.Expr] -> TranslatorSession [AST.Expr] +argsToVHDLExprs = catMaybesM . (mapM argToVHDLExpr) + +argToVHDLExpr :: Either CoreSyn.CoreExpr AST.Expr -> TranslatorSession (Maybe AST.Expr) +argToVHDLExpr (Left expr) = MonadState.lift tsType $ do + let errmsg = "Generate.argToVHDLExpr: Using non-representable type? Should not happen!" + ty_maybe <- vhdlTy errmsg expr + case ty_maybe of + Just _ -> do + vhdl_expr <- varToVHDLExpr $ exprToVar expr + return $ Just vhdl_expr + Nothing -> return Nothing + +argToVHDLExpr (Right expr) = return $ Just expr + +-- A function to wrap a builder-like function that generates no component +-- instantiations +genNoInsts :: + (dst -> func -> args -> TranslatorSession [AST.ConcSm]) + -> (dst -> func -> args -> TranslatorSession ([AST.ConcSm], [CoreSyn.CoreBndr])) +genNoInsts wrap dst func args = do + concsms <- wrap dst func args + return (concsms, []) -- | A function to wrap a builder-like function that expects its arguments to -- be variables. genVarArgs :: (dst -> func -> [Var.Var] -> res) -> (dst -> func -> [Either CoreSyn.CoreExpr AST.Expr] -> res) -genVarArgs wrap dst func args = wrap dst func args' +genVarArgs wrap = genCoreArgs $ \dst func args -> let + args' = map exprToVar args + in + wrap dst func args' + +-- | A function to wrap a builder-like function that expects its arguments to +-- be core expressions. +genCoreArgs :: + (dst -> func -> [CoreSyn.CoreExpr] -> res) + -> (dst -> func -> [Either CoreSyn.CoreExpr AST.Expr] -> res) +genCoreArgs wrap dst func args = wrap dst func args' where - args' = map exprToVar exprargs -- Check (rather crudely) that all arguments are CoreExprs - (exprargs, []) = Either.partitionEithers args + args' = case Either.partitionEithers args of + (exprargs, []) -> exprargs + (exprsargs, rest) -> error $ "\nGenerate.genCoreArgs: expect core expression arguments but found ast exprs:" ++ (show rest) -- | A function to wrap a builder-like function that expects its arguments to -- be Literals genLitArgs :: - (dst -> func -> [Literal.Literal] -> res) - -> (dst -> func -> [Either CoreSyn.CoreExpr AST.Expr] -> res) -genLitArgs wrap dst func args = wrap dst func args' - where - args' = map exprToLit litargs - -- FIXME: Check if we were passed an CoreSyn.App - litargs = concat (map getLiterals exprargs) - (exprargs, []) = Either.partitionEithers args + (dst -> func -> [Literal.Literal] -> TranslatorSession [AST.ConcSm]) + -> (dst -> func -> [Either CoreSyn.CoreExpr AST.Expr] -> TranslatorSession [AST.ConcSm]) +genLitArgs wrap dst func args = do + hscenv <- MonadState.lift tsType $ MonadState.get tsHscEnv + let (exprargs, []) = Either.partitionEithers args + -- FIXME: Check if we were passed an CoreSyn.App + let litargs = concatMap (getLiterals hscenv) exprargs + let args' = map exprToLit litargs + wrap dst func args' -- | A function to wrap a builder-like function that produces an expression -- and expects it to be assigned to the destination. genExprRes :: - ((Either CoreSyn.CoreBndr AST.VHDLName) -> func -> [arg] -> VHDLSession AST.Expr) - -> ((Either CoreSyn.CoreBndr AST.VHDLName) -> func -> [arg] -> VHDLSession [AST.ConcSm]) + ((Either CoreSyn.CoreBndr AST.VHDLName) -> func -> [arg] -> TranslatorSession AST.Expr) + -> ((Either CoreSyn.CoreBndr AST.VHDLName) -> func -> [arg] -> TranslatorSession [AST.ConcSm]) genExprRes wrap dst func args = do expr <- wrap dst func args - return $ [mkUncondAssign dst expr] + return [mkUncondAssign dst expr] -- | Generate a binary operator application. The first argument should be a -- constructor from the AST.Expr type, e.g. AST.And. genOperator2 :: (AST.Expr -> AST.Expr -> AST.Expr) -> BuiltinBuilder -genOperator2 op = genExprArgs $ genExprRes (genOperator2' op) -genOperator2' :: (AST.Expr -> AST.Expr -> AST.Expr) -> dst -> CoreSyn.CoreBndr -> [AST.Expr] -> VHDLSession AST.Expr +genOperator2 op = genNoInsts $ genExprArgs $ genExprRes (genOperator2' op) +genOperator2' :: (AST.Expr -> AST.Expr -> AST.Expr) -> dst -> CoreSyn.CoreBndr -> [AST.Expr] -> TranslatorSession AST.Expr genOperator2' op _ f [arg1, arg2] = return $ op arg1 arg2 -- | Generate a unary operator application genOperator1 :: (AST.Expr -> AST.Expr) -> BuiltinBuilder -genOperator1 op = genExprArgs $ genExprRes (genOperator1' op) -genOperator1' :: (AST.Expr -> AST.Expr) -> dst -> CoreSyn.CoreBndr -> [AST.Expr] -> VHDLSession AST.Expr +genOperator1 op = genNoInsts $ genExprArgs $ genExprRes (genOperator1' op) +genOperator1' :: (AST.Expr -> AST.Expr) -> dst -> CoreSyn.CoreBndr -> [AST.Expr] -> TranslatorSession AST.Expr genOperator1' op _ f [arg] = return $ op arg -- | Generate a unary operator application genNegation :: BuiltinBuilder -genNegation = genVarArgs $ genExprRes genNegation' -genNegation' :: dst -> CoreSyn.CoreBndr -> [Var.Var] -> VHDLSession AST.Expr +genNegation = genNoInsts $ genVarArgs $ genExprRes genNegation' +genNegation' :: dst -> CoreSyn.CoreBndr -> [Var.Var] -> TranslatorSession AST.Expr genNegation' _ f [arg] = do - arg1 <- MonadState.lift vsType $ varToVHDLExpr arg + arg1 <- MonadState.lift tsType $ varToVHDLExpr arg let ty = Var.varType arg let (tycon, args) = Type.splitTyConApp ty let name = Name.getOccString (TyCon.tyConName tycon) case name of "SizedInt" -> return $ AST.Neg arg1 - otherwise -> error $ "\nGenerate.genNegation': Negation allowed for type: " ++ show name + otherwise -> error $ "\nGenerate.genNegation': Negation not allowed for type: " ++ show name -- | Generate a function call from the destination binder, function name and a -- list of expressions (its arguments) genFCall :: Bool -> BuiltinBuilder -genFCall switch = genExprArgs $ genExprRes (genFCall' switch) -genFCall' :: Bool -> Either CoreSyn.CoreBndr AST.VHDLName -> CoreSyn.CoreBndr -> [AST.Expr] -> VHDLSession AST.Expr +genFCall switch = genNoInsts $ genExprArgs $ genExprRes (genFCall' switch) +genFCall' :: Bool -> Either CoreSyn.CoreBndr AST.VHDLName -> CoreSyn.CoreBndr -> [AST.Expr] -> TranslatorSession AST.Expr genFCall' switch (Left res) f args = do let fname = varToString f let el_ty = if switch then (Var.varType res) else ((tfvec_elem . Var.varType) res) - id <- MonadState.lift vsType $ vectorFunId el_ty fname + id <- MonadState.lift tsType $ vectorFunId el_ty fname return $ AST.PrimFCall $ AST.FCall (AST.NSimple id) $ map (\exp -> Nothing AST.:=>: AST.ADExpr exp) args genFCall' _ (Right name) _ _ = error $ "\nGenerate.genFCall': Cannot generate builtin function call assigned to a VHDLName: " ++ show name genFromSizedWord :: BuiltinBuilder -genFromSizedWord = genExprArgs $ genExprRes genFromSizedWord' -genFromSizedWord' :: Either CoreSyn.CoreBndr AST.VHDLName -> CoreSyn.CoreBndr -> [AST.Expr] -> VHDLSession AST.Expr -genFromSizedWord' (Left res) f args = do - let fname = varToString f - return $ AST.PrimFCall $ AST.FCall (AST.NSimple (mkVHDLBasicId toIntegerId)) $ - map (\exp -> Nothing AST.:=>: AST.ADExpr exp) args +genFromSizedWord = genNoInsts $ genExprArgs genFromSizedWord' +genFromSizedWord' :: Either CoreSyn.CoreBndr AST.VHDLName -> CoreSyn.CoreBndr -> [AST.Expr] -> TranslatorSession [AST.ConcSm] +genFromSizedWord' (Left res) f args@[arg] = + return [mkUncondAssign (Left res) arg] + -- let fname = varToString f + -- return $ AST.PrimFCall $ AST.FCall (AST.NSimple (mkVHDLBasicId toIntegerId)) $ + -- map (\exp -> Nothing AST.:=>: AST.ADExpr exp) args genFromSizedWord' (Right name) _ _ = error $ "\nGenerate.genFromSizedWord': Cannot generate builtin function call assigned to a VHDLName: " ++ show name +genFromRangedWord :: BuiltinBuilder +genFromRangedWord = genNoInsts $ genExprArgs $ genExprRes genFromRangedWord' +genFromRangedWord' :: Either CoreSyn.CoreBndr AST.VHDLName -> CoreSyn.CoreBndr -> [AST.Expr] -> TranslatorSession AST.Expr +genFromRangedWord' (Left res) f [arg] = do { + ; let { ty = Var.varType res + ; (tycon, args) = Type.splitTyConApp ty + ; name = Name.getOccString (TyCon.tyConName tycon) + } ; + ; len <- MonadState.lift tsType $ tfp_to_int (sized_word_len_ty ty) + ; return $ AST.PrimFCall $ AST.FCall (AST.NSimple (mkVHDLBasicId resizeId)) + [Nothing AST.:=>: AST.ADExpr arg, Nothing AST.:=>: AST.ADExpr( AST.PrimLit (show len))] + } +genFromRangedWord' (Right name) _ _ = error $ "\nGenerate.genFromRangedWord': Cannot generate builtin function call assigned to a VHDLName: " ++ show name + genResize :: BuiltinBuilder -genResize = genExprArgs $ genExprRes genResize' -genResize' :: Either CoreSyn.CoreBndr AST.VHDLName -> CoreSyn.CoreBndr -> [AST.Expr] -> VHDLSession AST.Expr +genResize = genNoInsts $ genExprArgs $ genExprRes genResize' +genResize' :: Either CoreSyn.CoreBndr AST.VHDLName -> CoreSyn.CoreBndr -> [AST.Expr] -> TranslatorSession AST.Expr genResize' (Left res) f [arg] = do { ; let { ty = Var.varType res ; (tycon, args) = Type.splitTyConApp ty ; name = Name.getOccString (TyCon.tyConName tycon) } ; ; len <- case name of - "SizedInt" -> MonadState.lift vsType $ tfp_to_int (sized_int_len_ty ty) - "SizedWord" -> MonadState.lift vsType $ tfp_to_int (sized_word_len_ty ty) + "SizedInt" -> MonadState.lift tsType $ tfp_to_int (sized_int_len_ty ty) + "SizedWord" -> MonadState.lift tsType $ tfp_to_int (sized_word_len_ty ty) ; return $ AST.PrimFCall $ AST.FCall (AST.NSimple (mkVHDLBasicId resizeId)) [Nothing AST.:=>: AST.ADExpr arg, Nothing AST.:=>: AST.ADExpr( AST.PrimLit (show len))] } genResize' (Right name) _ _ = error $ "\nGenerate.genFromSizedWord': Cannot generate builtin function call assigned to a VHDLName: " ++ show name +genTimes :: BuiltinBuilder +genTimes = genNoInsts $ genExprArgs $ genExprRes genTimes' +genTimes' :: Either CoreSyn.CoreBndr AST.VHDLName -> CoreSyn.CoreBndr -> [AST.Expr] -> TranslatorSession AST.Expr +genTimes' (Left res) f [arg1,arg2] = do { + ; let { ty = Var.varType res + ; (tycon, args) = Type.splitTyConApp ty + ; name = Name.getOccString (TyCon.tyConName tycon) + } ; + ; len <- case name of + "SizedInt" -> MonadState.lift tsType $ tfp_to_int (sized_int_len_ty ty) + "SizedWord" -> MonadState.lift tsType $ tfp_to_int (sized_word_len_ty ty) + "RangedWord" -> do { ubound <- MonadState.lift tsType $ tfp_to_int (ranged_word_bound_ty ty) + ; let bitsize = floor (logBase 2 (fromInteger (toInteger ubound))) + ; return bitsize + } + ; return $ AST.PrimFCall $ AST.FCall (AST.NSimple (mkVHDLBasicId resizeId)) + [Nothing AST.:=>: AST.ADExpr (arg1 AST.:*: arg2), Nothing AST.:=>: AST.ADExpr( AST.PrimLit (show len))] + } +genTimes' (Right name) _ _ = error $ "\nGenerate.genTimes': Cannot generate builtin function call assigned to a VHDLName: " ++ show name + -- FIXME: I'm calling genLitArgs which is very specific function, -- which needs to be fixed as well genFromInteger :: BuiltinBuilder -genFromInteger = genLitArgs $ genExprRes genFromInteger' -genFromInteger' :: Either CoreSyn.CoreBndr AST.VHDLName -> CoreSyn.CoreBndr -> [Literal.Literal] -> VHDLSession AST.Expr +genFromInteger = genNoInsts $ genLitArgs $ genExprRes genFromInteger' +genFromInteger' :: Either CoreSyn.CoreBndr AST.VHDLName -> CoreSyn.CoreBndr -> [Literal.Literal] -> TranslatorSession AST.Expr genFromInteger' (Left res) f lits = do { ; let { ty = Var.varType res ; (tycon, args) = Type.splitTyConApp ty ; name = Name.getOccString (TyCon.tyConName tycon) } ; ; len <- case name of - "SizedInt" -> MonadState.lift vsType $ tfp_to_int (sized_int_len_ty ty) - "SizedWord" -> MonadState.lift vsType $ tfp_to_int (sized_word_len_ty ty) - ; let fname = case name of "SizedInt" -> toSignedId ; "SizedWord" -> toUnsignedId - ; return $ AST.PrimFCall $ AST.FCall (AST.NSimple (mkVHDLBasicId fname)) + "SizedInt" -> MonadState.lift tsType $ tfp_to_int (sized_int_len_ty ty) + "SizedWord" -> MonadState.lift tsType $ tfp_to_int (sized_word_len_ty ty) + "RangedWord" -> do { + ; bound <- MonadState.lift tsType $ tfp_to_int (ranged_word_bound_ty ty) + ; return $ floor (logBase 2 (fromInteger (toInteger (bound)))) + 1 + } + ; let fname = case name of "SizedInt" -> toSignedId ; "SizedWord" -> toUnsignedId ; "RangedWord" -> toUnsignedId + ; return $ AST.PrimFCall $ AST.FCall (AST.NSimple (mkVHDLBasicId fname)) [Nothing AST.:=>: AST.ADExpr (AST.PrimLit (show (last lits))), Nothing AST.:=>: AST.ADExpr( AST.PrimLit (show len))] + } genFromInteger' (Right name) _ _ = error $ "\nGenerate.genFromInteger': Cannot generate builtin function call assigned to a VHDLName: " ++ show name @@ -159,6 +508,7 @@ genFromInteger' (Right name) _ _ = error $ "\nGenerate.genFromInteger': Cannot g genSizedInt :: BuiltinBuilder genSizedInt = genFromInteger +{- -- | Generate a Builder for the builtin datacon TFVec genTFVec :: BuiltinBuilder genTFVec (Left res) f [Left (CoreSyn.Let (CoreSyn.Rec letBinders) letRes)] = do { @@ -169,7 +519,7 @@ genTFVec (Left res) f [Left (CoreSyn.Let (CoreSyn.Rec letBinders) letRes)] = do -- Get all the Assigned binders ; let assignedBinders = Maybe.catMaybes (map fst letAssigns) -- Make signal names for all the assigned binders - ; sigs <- mapM (\x -> MonadState.lift vsType $ varToVHDLExpr x) (assignedBinders ++ resBinders) + ; sigs <- mapM (\x -> MonadState.lift tsType $ varToVHDLExpr x) (assignedBinders ++ resBinders) -- Assign all the signals to the resulting vector ; let { vecsigns = mkAggregateSignal sigs ; vecassign = mkUncondAssign (Left res) vecsigns @@ -185,7 +535,7 @@ genTFVec (Left res) f [Left (CoreSyn.Let (CoreSyn.Rec letBinders) letRes)] = do ; return $ [AST.CSBSm block] } where - genBinderAssign :: (CoreSyn.CoreBndr, CoreSyn.CoreExpr) -> VHDLSession (Maybe CoreSyn.CoreBndr, [AST.ConcSm]) + genBinderAssign :: (CoreSyn.CoreBndr, CoreSyn.CoreExpr) -> TranslatorSession (Maybe CoreSyn.CoreBndr, [AST.ConcSm]) -- For now we only translate applications genBinderAssign (bndr, app@(CoreSyn.App _ _)) = do let (CoreSyn.Var f, args) = CoreSyn.collectArgs app @@ -193,7 +543,7 @@ genTFVec (Left res) f [Left (CoreSyn.Let (CoreSyn.Rec letBinders) letRes)] = do apps <- genApplication (Left bndr) f (map Left valargs) return (Just bndr, apps) genBinderAssign _ = return (Nothing,[]) - genResAssign :: CoreSyn.CoreExpr -> VHDLSession ([CoreSyn.CoreBndr], [AST.ConcSm]) + genResAssign :: CoreSyn.CoreExpr -> TranslatorSession ([CoreSyn.CoreBndr], [AST.ConcSm]) genResAssign app@(CoreSyn.App _ letexpr) = do case letexpr of (CoreSyn.Let (CoreSyn.Rec letbndrs) letres) -> do @@ -213,7 +563,7 @@ genTFVec (Left res) f [Left app@(CoreSyn.App _ _)] = do { otherwise -> error $ "\nGenerate.genTFVec: Cannot generate TFVec: " ++ show res ++ ", with elems:\n" ++ show elems ++ "\n" ++ pprString elems) elems } ; - ; sigs <- mapM (\x -> MonadState.lift vsType $ varToVHDLExpr x) binders + ; sigs <- mapM (\x -> MonadState.lift tsType $ varToVHDLExpr x) binders -- Assign all the signals to the resulting vector ; let { vecsigns = mkAggregateSignal sigs ; vecassign = mkUncondAssign (Left res) vecsigns @@ -228,7 +578,7 @@ genTFVec (Left res) f [Left app@(CoreSyn.App _ _)] = do { genTFVec (Left name) _ [Left xs] = error $ "\nGenerate.genTFVec: Cannot generate TFVec: " ++ show name ++ ", with elems:\n" ++ show xs ++ "\n" ++ pprString xs genTFVec (Right name) _ _ = error $ "\nGenerate.genTFVec: Cannot generate TFVec assigned to VHDLName: " ++ show name - +-} -- | Generate a generate statement for the builtin function "map" genMap :: BuiltinBuilder genMap (Left res) f [Left mapped_f, Left (CoreSyn.Var arg)] = do { @@ -237,7 +587,7 @@ genMap (Left res) f [Left mapped_f, Left (CoreSyn.Var arg)] = do { -- we must index it (which we couldn't if it was a VHDL Expr, since only -- VHDLNames can be indexed). -- Setup the generate scheme - ; len <- MonadState.lift vsType $ tfp_to_int $ (tfvec_len_ty . Var.varType) res + ; len <- MonadState.lift tsType $ tfp_to_int $ (tfvec_len_ty . Var.varType) res -- TODO: Use something better than varToString ; let { label = mkVHDLExtId ("mapVector" ++ (varToString res)) ; n_id = mkVHDLBasicId "n" @@ -251,19 +601,17 @@ genMap (Left res) f [Left mapped_f, Left (CoreSyn.Var arg)] = do { ; (CoreSyn.Var real_f, already_mapped_args) = CoreSyn.collectArgs mapped_f ; valargs = get_val_args (Var.varType real_f) already_mapped_args } ; - ; app_concsms <- genApplication (Right resname) real_f (map Left valargs ++ [Right argexpr]) + ; (app_concsms, used) <- genApplication (Right resname) real_f (map Left valargs ++ [Right argexpr]) -- Return the generate statement - ; return [AST.CSGSm $ AST.GenerateSm label genScheme [] app_concsms] + ; return ([AST.CSGSm $ AST.GenerateSm label genScheme [] app_concsms], used) } genMap' (Right name) _ _ = error $ "\nGenerate.genMap': Cannot generate map function call assigned to a VHDLName: " ++ show name genZipWith :: BuiltinBuilder -genZipWith = genVarArgs genZipWith' -genZipWith' :: (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> VHDLSession [AST.ConcSm] -genZipWith' (Left res) f args@[zipped_f, arg1, arg2] = do { +genZipWith (Left res) f args@[Left zipped_f, Left (CoreSyn.Var arg1), Left (CoreSyn.Var arg2)] = do { -- Setup the generate scheme - ; len <- MonadState.lift vsType $ tfp_to_int $ (tfvec_len_ty . Var.varType) res + ; len <- MonadState.lift tsType $ tfp_to_int $ (tfvec_len_ty . Var.varType) res -- TODO: Use something better than varToString ; let { label = mkVHDLExtId ("zipWithVector" ++ (varToString res)) ; n_id = mkVHDLBasicId "n" @@ -273,12 +621,14 @@ genZipWith' (Left res) f args@[zipped_f, arg1, arg2] = do { -- Create the content of the generate statement: Applying the zipped_f to -- each of the elements in arg1 and arg2, storing to each element in res ; resname = mkIndexedName (varToVHDLName res) n_expr + ; (CoreSyn.Var real_f, already_mapped_args) = CoreSyn.collectArgs zipped_f + ; valargs = get_val_args (Var.varType real_f) already_mapped_args ; argexpr1 = vhdlNameToVHDLExpr $ mkIndexedName (varToVHDLName arg1) n_expr ; argexpr2 = vhdlNameToVHDLExpr $ mkIndexedName (varToVHDLName arg2) n_expr } ; - ; app_concsms <- genApplication (Right resname) zipped_f [Right argexpr1, Right argexpr2] + ; (app_concsms, used) <- genApplication (Right resname) real_f (map Left valargs ++ [Right argexpr1, Right argexpr2]) -- Return the generate functions - ; return [AST.CSGSm $ AST.GenerateSm label genScheme [] app_concsms] + ; return ([AST.CSGSm $ AST.GenerateSm label genScheme [] app_concsms], used) } genFoldl :: BuiltinBuilder @@ -290,20 +640,20 @@ genFoldr = genFold False genFold :: Bool -> BuiltinBuilder genFold left = genVarArgs (genFold' left) -genFold' :: Bool -> (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> VHDLSession [AST.ConcSm] +genFold' :: Bool -> (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> TranslatorSession ([AST.ConcSm], [CoreSyn.CoreBndr]) genFold' left res f args@[folded_f , start ,vec]= do - len <- MonadState.lift vsType $ tfp_to_int $ (tfvec_len_ty (Var.varType vec)) + len <- MonadState.lift tsType $ tfp_to_int (tfvec_len_ty (Var.varType vec)) genFold'' len left res f args -genFold'' :: Int -> Bool -> (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> VHDLSession [AST.ConcSm] +genFold'' :: Int -> Bool -> (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> TranslatorSession ([AST.ConcSm], [CoreSyn.CoreBndr]) -- Special case for an empty input vector, just assign start to res genFold'' len left (Left res) _ [_, start, vec] | len == 0 = do - arg <- MonadState.lift vsType $ varToVHDLExpr start - return [mkUncondAssign (Left res) arg] + arg <- MonadState.lift tsType $ varToVHDLExpr start + return ([mkUncondAssign (Left res) arg], []) genFold'' len left (Left res) f [folded_f, start, vec] = do -- The vector length - --len <- MonadState.lift vsType $ tfp_to_int $ (tfvec_len_ty . Var.varType) vec + --len <- MonadState.lift tsType $ tfp_to_int $ (tfvec_len_ty . Var.varType) vec -- An expression for len-1 let len_min_expr = (AST.PrimLit $ show (len-1)) -- evec is (TFVec n), so it still needs an element type @@ -312,7 +662,8 @@ genFold'' len left (Left res) f [folded_f, start, vec] = do -- temporary vector let tmp_ty = Type.mkAppTy nvec (Var.varType start) let error_msg = "\nGenerate.genFold': Can not construct temp vector for element type: " ++ pprString tmp_ty - tmp_vhdl_ty <- MonadState.lift vsType $ vhdl_ty error_msg tmp_ty + -- TODO: Handle Nothing + Just tmp_vhdl_ty <- MonadState.lift tsType $ vhdlTy error_msg tmp_ty -- Setup the generate scheme let gen_label = mkVHDLExtId ("foldlVector" ++ (varToString vec)) let block_label = mkVHDLExtId ("foldlVector" ++ (varToString res)) @@ -322,14 +673,15 @@ genFold'' len left (Left res) f [folded_f, start, vec] = do -- Make the intermediate vector let tmp_dec = AST.BDISD $ AST.SigDec tmp_id tmp_vhdl_ty Nothing -- Create the generate statement - cells <- sequence [genFirstCell, genOtherCell] + cells' <- sequence [genFirstCell, genOtherCell] + let (cells, useds) = unzip cells' let gen_sm = AST.GenerateSm gen_label gen_scheme [] (map AST.CSGSm cells) -- Assign tmp[len-1] or tmp[0] to res let out_assign = mkUncondAssign (Left res) $ vhdlNameToVHDLExpr (if left then (mkIndexedName tmp_name (AST.PrimLit $ show (len-1))) else (mkIndexedName tmp_name (AST.PrimLit "0"))) let block = AST.BlockSm block_label [] (AST.PMapAspect []) [tmp_dec] [AST.CSGSm gen_sm, out_assign] - return [AST.CSBSm block] + return ([AST.CSBSm block], concat useds) where -- An id for the counter n_id = mkVHDLBasicId "n" @@ -341,9 +693,9 @@ genFold'' len left (Left res) f [folded_f, start, vec] = do tmp_id = mkVHDLBasicId "tmp" tmp_name = AST.NSimple tmp_id -- Generate parts of the fold - genFirstCell, genOtherCell :: VHDLSession AST.GenerateSm + genFirstCell, genOtherCell :: TranslatorSession (AST.GenerateSm, [CoreSyn.CoreBndr]) genFirstCell = do - len <- MonadState.lift vsType $ tfp_to_int $ (tfvec_len_ty . Var.varType) vec + len <- MonadState.lift tsType $ tfp_to_int $ (tfvec_len_ty . Var.varType) vec let cond_label = mkVHDLExtId "firstcell" -- if n == 0 or n == len-1 let cond_scheme = AST.IfGn $ n_cur AST.:=: (if left then (AST.PrimLit "0") @@ -351,19 +703,19 @@ genFold'' len left (Left res) f [folded_f, start, vec] = do -- Output to tmp[current n] let resname = mkIndexedName tmp_name n_cur -- Input from start - argexpr1 <- MonadState.lift vsType $ varToVHDLExpr start + argexpr1 <- MonadState.lift tsType $ varToVHDLExpr start -- Input from vec[current n] let argexpr2 = vhdlNameToVHDLExpr $ mkIndexedName (varToVHDLName vec) n_cur - app_concsms <- genApplication (Right resname) folded_f ( if left then + (app_concsms, used) <- genApplication (Right resname) folded_f ( if left then [Right argexpr1, Right argexpr2] else [Right argexpr2, Right argexpr1] ) -- Return the conditional generate part - return $ AST.GenerateSm cond_label cond_scheme [] app_concsms + return (AST.GenerateSm cond_label cond_scheme [] app_concsms, used) genOtherCell = do - len <- MonadState.lift vsType $ tfp_to_int $ (tfvec_len_ty . Var.varType) vec + len <- MonadState.lift tsType $ tfp_to_int $ (tfvec_len_ty . Var.varType) vec let cond_label = mkVHDLExtId "othercell" -- if n > 0 or n < len-1 let cond_scheme = AST.IfGn $ n_cur AST.:/=: (if left then (AST.PrimLit "0") @@ -374,21 +726,21 @@ genFold'' len left (Left res) f [folded_f, start, vec] = do let argexpr1 = vhdlNameToVHDLExpr $ mkIndexedName tmp_name n_prev -- Input from vec[current n] let argexpr2 = vhdlNameToVHDLExpr $ mkIndexedName (varToVHDLName vec) n_cur - app_concsms <- genApplication (Right resname) folded_f ( if left then + (app_concsms, used) <- genApplication (Right resname) folded_f ( if left then [Right argexpr1, Right argexpr2] else [Right argexpr2, Right argexpr1] ) -- Return the conditional generate part - return $ AST.GenerateSm cond_label cond_scheme [] app_concsms + return (AST.GenerateSm cond_label cond_scheme [] app_concsms, used) -- | Generate a generate statement for the builtin function "zip" genZip :: BuiltinBuilder -genZip = genVarArgs genZip' -genZip' :: (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> VHDLSession [AST.ConcSm] +genZip = genNoInsts $ genVarArgs genZip' +genZip' :: (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> TranslatorSession [AST.ConcSm] genZip' (Left res) f args@[arg1, arg2] = do { -- Setup the generate scheme - ; len <- MonadState.lift vsType $ tfp_to_int $ (tfvec_len_ty . Var.varType) res + ; len <- MonadState.lift tsType $ tfp_to_int $ (tfvec_len_ty . Var.varType) res -- TODO: Use something better than varToString ; let { label = mkVHDLExtId ("zipVector" ++ (varToString res)) ; n_id = mkVHDLBasicId "n" @@ -399,7 +751,7 @@ genZip' (Left res) f args@[arg1, arg2] = do { ; argexpr1 = vhdlNameToVHDLExpr $ mkIndexedName (varToVHDLName arg1) n_expr ; argexpr2 = vhdlNameToVHDLExpr $ mkIndexedName (varToVHDLName arg2) n_expr } ; - ; labels <- MonadState.lift vsType $ getFieldLabels (tfvec_elem (Var.varType res)) + ; labels <- MonadState.lift tsType $ getFieldLabels (tfvec_elem (Var.varType res)) ; let { resnameA = mkSelectedName resname' (labels!!0) ; resnameB = mkSelectedName resname' (labels!!1) ; resA_assign = mkUncondAssign (Right resnameA) argexpr1 @@ -408,55 +760,103 @@ genZip' (Left res) f args@[arg1, arg2] = do { -- Return the generate functions ; return [AST.CSGSm $ AST.GenerateSm label genScheme [] [resA_assign,resB_assign]] } - --- | Generate a generate statement for the builtin function "unzip" -genUnzip :: BuiltinBuilder -genUnzip = genVarArgs genUnzip' -genUnzip' :: (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> VHDLSession [AST.ConcSm] -genUnzip' (Left res) f args@[arg] = do { - -- Setup the generate scheme - ; len <- MonadState.lift vsType $ tfp_to_int $ (tfvec_len_ty . Var.varType) arg - -- TODO: Use something better than varToString - ; let { label = mkVHDLExtId ("unzipVector" ++ (varToString res)) - ; n_id = mkVHDLBasicId "n" - ; n_expr = idToVHDLExpr n_id - ; range = AST.ToRange (AST.PrimLit "0") (AST.PrimLit $ show (len-1)) - ; genScheme = AST.ForGn n_id range - ; resname' = varToVHDLName res - ; argexpr' = mkIndexedName (varToVHDLName arg) n_expr + +-- | Generate a generate statement for the builtin function "fst" +genFst :: BuiltinBuilder +genFst = genNoInsts $ genVarArgs genFst' +genFst' :: (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> TranslatorSession [AST.ConcSm] +genFst' (Left res) f args@[arg] = do { + ; labels <- MonadState.lift tsType $ getFieldLabels (Var.varType arg) + ; let { argexpr' = varToVHDLName arg + ; argexprA = vhdlNameToVHDLExpr $ mkSelectedName argexpr' (labels!!0) + ; assign = mkUncondAssign (Left res) argexprA } ; - ; reslabels <- MonadState.lift vsType $ getFieldLabels (Var.varType res) - ; arglabels <- MonadState.lift vsType $ getFieldLabels (tfvec_elem (Var.varType arg)) - ; let { resnameA = mkIndexedName (mkSelectedName resname' (reslabels!!0)) n_expr - ; resnameB = mkIndexedName (mkSelectedName resname' (reslabels!!1)) n_expr - ; argexprA = vhdlNameToVHDLExpr $ mkSelectedName argexpr' (arglabels!!0) - ; argexprB = vhdlNameToVHDLExpr $ mkSelectedName argexpr' (arglabels!!1) - ; resA_assign = mkUncondAssign (Right resnameA) argexprA - ; resB_assign = mkUncondAssign (Right resnameB) argexprB + -- Return the generate functions + ; return [assign] + } + +-- | Generate a generate statement for the builtin function "snd" +genSnd :: BuiltinBuilder +genSnd = genNoInsts $ genVarArgs genSnd' +genSnd' :: (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> TranslatorSession [AST.ConcSm] +genSnd' (Left res) f args@[arg] = do { + ; labels <- MonadState.lift tsType $ getFieldLabels (Var.varType arg) + ; let { argexpr' = varToVHDLName arg + ; argexprB = vhdlNameToVHDLExpr $ mkSelectedName argexpr' (labels!!1) + ; assign = mkUncondAssign (Left res) argexprB } ; -- Return the generate functions - ; return [AST.CSGSm $ AST.GenerateSm label genScheme [] [resA_assign,resB_assign]] + ; return [assign] } + +-- | Generate a generate statement for the builtin function "unzip" +genUnzip :: BuiltinBuilder +genUnzip = genNoInsts $ genVarArgs genUnzip' +genUnzip' :: (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> TranslatorSession [AST.ConcSm] +genUnzip' (Left res) f args@[arg] = do + let error_msg = "\nGenerate.genUnzip: Cannot generate unzip call: " ++ pprString res ++ " = " ++ pprString f ++ " " ++ pprString arg + htype <- MonadState.lift tsType $ mkHType error_msg (Var.varType arg) + -- Prepare a unconditional assignment, for the case when either part + -- of the unzip is a state variable, which will disappear in the + -- resulting VHDL, making the the unzip no longer required. + case htype of + -- A normal vector containing two-tuples + VecType _ (AggrType _ [_, _]) -> do { + -- Setup the generate scheme + ; len <- MonadState.lift tsType $ tfp_to_int $ (tfvec_len_ty . Var.varType) arg + -- TODO: Use something better than varToString + ; let { label = mkVHDLExtId ("unzipVector" ++ (varToString res)) + ; n_id = mkVHDLBasicId "n" + ; n_expr = idToVHDLExpr n_id + ; range = AST.ToRange (AST.PrimLit "0") (AST.PrimLit $ show (len-1)) + ; genScheme = AST.ForGn n_id range + ; resname' = varToVHDLName res + ; argexpr' = mkIndexedName (varToVHDLName arg) n_expr + } ; + ; reslabels <- MonadState.lift tsType $ getFieldLabels (Var.varType res) + ; arglabels <- MonadState.lift tsType $ getFieldLabels (tfvec_elem (Var.varType arg)) + ; let { resnameA = mkIndexedName (mkSelectedName resname' (reslabels!!0)) n_expr + ; resnameB = mkIndexedName (mkSelectedName resname' (reslabels!!1)) n_expr + ; argexprA = vhdlNameToVHDLExpr $ mkSelectedName argexpr' (arglabels!!0) + ; argexprB = vhdlNameToVHDLExpr $ mkSelectedName argexpr' (arglabels!!1) + ; resA_assign = mkUncondAssign (Right resnameA) argexprA + ; resB_assign = mkUncondAssign (Right resnameB) argexprB + } ; + -- Return the generate functions + ; return [AST.CSGSm $ AST.GenerateSm label genScheme [] [resA_assign,resB_assign]] + } + -- Both elements of the tuple were state, so they've disappeared. No + -- need to do anything + VecType _ (AggrType _ []) -> return [] + -- A vector containing aggregates with more than two elements? + VecType _ (AggrType _ _) -> error $ "Unzipping a value that is not a vector of two-tuples? Value: " ++ pprString arg ++ "\nType: " ++ pprString (Var.varType arg) + -- One of the elements of the tuple was state, so there won't be a + -- tuple (record) in the VHDL output. We can just do a plain + -- assignment, then. + VecType _ _ -> do + argexpr <- MonadState.lift tsType $ varToVHDLExpr arg + return [mkUncondAssign (Left res) argexpr] + _ -> error $ "Unzipping a value that is not a vector? Value: " ++ pprString arg ++ "\nType: " ++ pprString (Var.varType arg) ++ "\nhtype: " ++ show htype genCopy :: BuiltinBuilder -genCopy = genVarArgs genCopy' -genCopy' :: (Either CoreSyn.CoreBndr AST.VHDLName ) -> CoreSyn.CoreBndr -> [Var.Var] -> VHDLSession [AST.ConcSm] -genCopy' (Left res) f args@[arg] = - let - resExpr = AST.Aggregate [AST.ElemAssoc (Just AST.Others) - (AST.PrimName $ (varToVHDLName arg))] - out_assign = mkUncondAssign (Left res) resExpr - in - return [out_assign] +genCopy = genNoInsts genCopy' +genCopy' :: (Either CoreSyn.CoreBndr AST.VHDLName ) -> CoreSyn.CoreBndr -> [Either CoreSyn.CoreExpr AST.Expr] -> TranslatorSession [AST.ConcSm] +genCopy' (Left res) f [arg] = do { + ; [arg'] <- argsToVHDLExprs [arg] + ; let { resExpr = AST.Aggregate [AST.ElemAssoc (Just AST.Others) arg'] + ; out_assign = mkUncondAssign (Left res) resExpr + } + ; return [out_assign] + } genConcat :: BuiltinBuilder -genConcat = genVarArgs genConcat' -genConcat' :: (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> VHDLSession [AST.ConcSm] +genConcat = genNoInsts $ genVarArgs genConcat' +genConcat' :: (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> TranslatorSession [AST.ConcSm] genConcat' (Left res) f args@[arg] = do { -- Setup the generate scheme - ; len1 <- MonadState.lift vsType $ tfp_to_int $ (tfvec_len_ty . Var.varType) arg + ; len1 <- MonadState.lift tsType $ tfp_to_int $ (tfvec_len_ty . Var.varType) arg ; let (_, nvec) = Type.splitAppTy (Var.varType arg) - ; len2 <- MonadState.lift vsType $ tfp_to_int $ tfvec_len_ty nvec + ; len2 <- MonadState.lift tsType $ tfp_to_int $ tfvec_len_ty nvec -- TODO: Use something better than varToString ; let { label = mkVHDLExtId ("concatVector" ++ (varToString res)) ; n_id = mkVHDLBasicId "n" @@ -493,18 +893,18 @@ genGenerate = genIterateOrGenerate False genIterateOrGenerate :: Bool -> BuiltinBuilder genIterateOrGenerate iter = genVarArgs (genIterateOrGenerate' iter) -genIterateOrGenerate' :: Bool -> (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> VHDLSession [AST.ConcSm] +genIterateOrGenerate' :: Bool -> (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> TranslatorSession ([AST.ConcSm], [CoreSyn.CoreBndr]) genIterateOrGenerate' iter (Left res) f args = do - len <- MonadState.lift vsType $ tfp_to_int ((tfvec_len_ty . Var.varType) res) + len <- MonadState.lift tsType $ tfp_to_int ((tfvec_len_ty . Var.varType) res) genIterateOrGenerate'' len iter (Left res) f args -genIterateOrGenerate'' :: Int -> Bool -> (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> VHDLSession [AST.ConcSm] +genIterateOrGenerate'' :: Int -> Bool -> (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> TranslatorSession ([AST.ConcSm], [CoreSyn.CoreBndr]) -- Special case for an empty input vector, just assign start to res -genIterateOrGenerate'' len iter (Left res) _ [app_f, start] | len == 0 = return [mkUncondAssign (Left res) (AST.PrimLit "\"\"")] +genIterateOrGenerate'' len iter (Left res) _ [app_f, start] | len == 0 = return ([mkUncondAssign (Left res) (AST.PrimLit "\"\"")], []) genIterateOrGenerate'' len iter (Left res) f [app_f, start] = do -- The vector length - -- len <- MonadState.lift vsType $ tfp_to_int ((tfvec_len_ty . Var.varType) res) + -- len <- MonadState.lift tsType $ tfp_to_int ((tfvec_len_ty . Var.varType) res) -- An expression for len-1 let len_min_expr = (AST.PrimLit $ show (len-1)) -- -- evec is (TFVec n), so it still needs an element type @@ -513,7 +913,8 @@ genIterateOrGenerate'' len iter (Left res) f [app_f, start] = do -- -- temporary vector let tmp_ty = Var.varType res let error_msg = "\nGenerate.genFold': Can not construct temp vector for element type: " ++ pprString tmp_ty - tmp_vhdl_ty <- MonadState.lift vsType $ vhdl_ty error_msg tmp_ty + -- TODO: Handle Nothing + Just tmp_vhdl_ty <- MonadState.lift tsType $ vhdlTy error_msg tmp_ty -- Setup the generate scheme let gen_label = mkVHDLExtId ("iterateVector" ++ (varToString start)) let block_label = mkVHDLExtId ("iterateVector" ++ (varToString res)) @@ -522,12 +923,13 @@ genIterateOrGenerate'' len iter (Left res) f [app_f, start] = do -- Make the intermediate vector let tmp_dec = AST.BDISD $ AST.SigDec tmp_id tmp_vhdl_ty Nothing -- Create the generate statement - cells <- sequence [genFirstCell, genOtherCell] + cells' <- sequence [genFirstCell, genOtherCell] + let (cells, useds) = unzip cells' let gen_sm = AST.GenerateSm gen_label gen_scheme [] (map AST.CSGSm cells) -- Assign tmp[len-1] or tmp[0] to res let out_assign = mkUncondAssign (Left res) $ vhdlNameToVHDLExpr tmp_name let block = AST.BlockSm block_label [] (AST.PMapAspect []) [tmp_dec] [AST.CSGSm gen_sm, out_assign] - return [AST.CSBSm block] + return ([AST.CSBSm block], concat useds) where -- An id for the counter n_id = mkVHDLBasicId "n" @@ -538,7 +940,7 @@ genIterateOrGenerate'' len iter (Left res) f [app_f, start] = do tmp_id = mkVHDLBasicId "tmp" tmp_name = AST.NSimple tmp_id -- Generate parts of the fold - genFirstCell, genOtherCell :: VHDLSession AST.GenerateSm + genFirstCell, genOtherCell :: TranslatorSession (AST.GenerateSm, [CoreSyn.CoreBndr]) genFirstCell = do let cond_label = mkVHDLExtId "firstcell" -- if n == 0 or n == len-1 @@ -546,15 +948,16 @@ genIterateOrGenerate'' len iter (Left res) f [app_f, start] = do -- Output to tmp[current n] let resname = mkIndexedName tmp_name n_cur -- Input from start - argexpr <- MonadState.lift vsType $ varToVHDLExpr start + argexpr <- MonadState.lift tsType $ varToVHDLExpr start let startassign = mkUncondAssign (Right resname) argexpr - app_concsms <- genApplication (Right resname) app_f [Right argexpr] + (app_concsms, used) <- genApplication (Right resname) app_f [Right argexpr] -- Return the conditional generate part - return $ AST.GenerateSm cond_label cond_scheme [] (if iter then + let gensm = AST.GenerateSm cond_label cond_scheme [] (if iter then [startassign] else app_concsms ) + return (gensm, used) genOtherCell = do let cond_label = mkVHDLExtId "othercell" @@ -564,11 +967,72 @@ genIterateOrGenerate'' len iter (Left res) f [app_f, start] = do let resname = mkIndexedName tmp_name n_cur -- Input from tmp[previous n] let argexpr = vhdlNameToVHDLExpr $ mkIndexedName tmp_name n_prev - app_concsms <- genApplication (Right resname) app_f [Right argexpr] + (app_concsms, used) <- genApplication (Right resname) app_f [Right argexpr] -- Return the conditional generate part - return $ AST.GenerateSm cond_label cond_scheme [] app_concsms + return (AST.GenerateSm cond_label cond_scheme [] app_concsms, used) +genBlockRAM :: BuiltinBuilder +genBlockRAM = genNoInsts $ genExprArgs genBlockRAM' +genBlockRAM' :: (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [AST.Expr] -> TranslatorSession [AST.ConcSm] +genBlockRAM' (Left res) f args@[data_in,rdaddr,wraddr,wrenable] = do + -- Get the ram type + let (tup,data_out) = Type.splitAppTy (Var.varType res) + let (tup',ramvec) = Type.splitAppTy tup + let Just realram = Type.coreView ramvec + let Just (tycon, types) = Type.splitTyConApp_maybe realram + Just ram_vhdl_ty <- MonadState.lift tsType $ vhdlTy "wtf" (head types) + -- Make the intermediate vector + let ram_dec = AST.BDISD $ AST.SigDec ram_id ram_vhdl_ty Nothing + -- Get the data_out name + -- reslabels <- MonadState.lift tsType $ getFieldLabels (Var.varType res) + let resname = varToVHDLName res + -- let resname = mkSelectedName resname' (reslabels!!0) + let rdaddr_int = genExprFCall (mkVHDLBasicId toIntegerId) rdaddr + let argexpr = vhdlNameToVHDLExpr $ mkIndexedName (AST.NSimple ram_id) rdaddr_int + let assign = mkUncondAssign (Right resname) argexpr + let block_label = mkVHDLExtId ("blockRAM" ++ (varToString res)) + let block = AST.BlockSm block_label [] (AST.PMapAspect []) [ram_dec] [assign, mkUpdateProcSm] + return [AST.CSBSm block] + where + ram_id = mkVHDLBasicId "ram" + mkUpdateProcSm :: AST.ConcSm + mkUpdateProcSm = AST.CSPSm $ AST.ProcSm proclabel [clockId] [statement] + where + proclabel = mkVHDLBasicId "updateRAM" + rising_edge = mkVHDLBasicId "rising_edge" + wraddr_int = genExprFCall (mkVHDLBasicId toIntegerId) wraddr + ramloc = mkIndexedName (AST.NSimple ram_id) wraddr_int + wform = AST.Wform [AST.WformElem data_in Nothing] + ramassign = AST.SigAssign ramloc wform + rising_edge_clk = genExprFCall rising_edge (AST.PrimName $ AST.NSimple clockId) + statement = AST.IfSm (AST.And rising_edge_clk wrenable) [ramassign] [] Nothing + +genSplit :: BuiltinBuilder +genSplit = genNoInsts $ genVarArgs genSplit' + +genSplit' :: (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> TranslatorSession [AST.ConcSm] +genSplit' (Left res) f args@[vecIn] = do { + ; labels <- MonadState.lift tsType $ getFieldLabels (Var.varType res) + ; len <- MonadState.lift tsType $ tfp_to_int $ (tfvec_len_ty . Var.varType) vecIn + ; let { block_label = mkVHDLExtId ("split" ++ (varToString vecIn)) + ; halflen = round ((fromIntegral len) / 2) + ; rangeL = vecSlice (AST.PrimLit "0") (AST.PrimLit $ show (halflen - 1)) + ; rangeR = vecSlice (AST.PrimLit $ show halflen) (AST.PrimLit $ show (len - 1)) + ; resname = varToVHDLName res + ; resnameL = mkSelectedName resname (labels!!0) + ; resnameR = mkSelectedName resname (labels!!1) + ; argexprL = vhdlNameToVHDLExpr rangeL + ; argexprR = vhdlNameToVHDLExpr rangeR + ; out_assignL = mkUncondAssign (Right resnameL) argexprL + ; out_assignR = mkUncondAssign (Right resnameR) argexprR + ; block = AST.BlockSm block_label [] (AST.PMapAspect []) [] [out_assignL, out_assignR] + } + ; return [AST.CSBSm block] + } + where + vecSlice init last = AST.NSlice (AST.SliceName (varToVHDLName res) + (AST.ToRange init last)) ----------------------------------------------------------------------------- -- Function to generate VHDL for applications ----------------------------------------------------------------------------- @@ -576,82 +1040,127 @@ genApplication :: (Either CoreSyn.CoreBndr AST.VHDLName) -- ^ Where to store the result? -> CoreSyn.CoreBndr -- ^ The function to apply -> [Either CoreSyn.CoreExpr AST.Expr] -- ^ The arguments to apply - -> VHDLSession [AST.ConcSm] -- ^ The resulting concurrent statements + -> TranslatorSession ([AST.ConcSm], [CoreSyn.CoreBndr]) + -- ^ The corresponding VHDL concurrent statements and entities + -- instantiated. genApplication dst f args = do - case Var.isGlobalId f of - False -> do - signatures <- getA vsSignatures - -- This is a local id, so it should be a function whose definition we - -- have and which can be turned into a component instantiation. - case (Map.lookup f signatures) of - Just signature -> do - args' <- eitherCoreOrExprArgs args - -- We have a signature, this is a top level binding. Generate a - -- component instantiation. - let entity_id = ent_id signature - -- TODO: Using show here isn't really pretty, but we'll need some - -- unique-ish value... - let label = "comp_ins_" ++ (either show prettyShow) dst - let portmaps = mkAssocElems args' ((either varToVHDLName id) dst) signature - return [mkComponentInst label entity_id portmaps] - Nothing -> do - -- No signature, so this must be a local variable reference. It - -- should have a representable type (and thus, no arguments) and a - -- signal should be generated for it. Just generate an - -- unconditional assignment here. - f' <- MonadState.lift vsType $ varToVHDLExpr f - return $ [mkUncondAssign dst f'] - True -> - case Var.idDetails f of - IdInfo.DataConWorkId dc -> case dst of - -- It's a datacon. Create a record from its arguments. - Left bndr -> do - -- We have the bndr, so we can get at the type - labels <- MonadState.lift vsType $ getFieldLabels (Var.varType bndr) - args' <- eitherCoreOrExprArgs args - return $ zipWith mkassign labels $ args' - where - mkassign :: AST.VHDLId -> AST.Expr -> AST.ConcSm - mkassign label arg = - let sel_name = mkSelectedName ((either varToVHDLName id) dst) label in - mkUncondAssign (Right sel_name) arg - Right _ -> error $ "\nGenerate.genApplication: Can't generate dataconstructor application without an original binder" - IdInfo.DataConWrapId dc -> case dst of - -- It's a datacon. Create a record from its arguments. - Left bndr -> do + nonemptydst <- case dst of + Left bndr -> hasNonEmptyType bndr + Right _ -> return True + if nonemptydst + then + if Var.isGlobalId f then + case Var.idDetails f of + IdInfo.DataConWorkId dc -> case dst of + -- It's a datacon. Create a record from its arguments. + Left bndr -> do + -- We have the bndr, so we can get at the type + htype <- MonadState.lift tsType $ mkHTypeEither (Var.varType bndr) + let argsNostate = filter (\x -> not (either hasStateType (\x -> False) x)) args + case argsNostate of + [arg] -> do + [arg'] <- argsToVHDLExprs [arg] + return ([mkUncondAssign dst arg'], []) + otherwise -> + case htype of + Right (AggrType _ _) -> do + labels <- MonadState.lift tsType $ getFieldLabels (Var.varType bndr) + args' <- argsToVHDLExprs argsNostate + return (zipWith mkassign labels args', []) + where + mkassign :: AST.VHDLId -> AST.Expr -> AST.ConcSm + mkassign label arg = + let sel_name = mkSelectedName ((either varToVHDLName id) dst) label in + mkUncondAssign (Right sel_name) arg + _ -> do -- error $ "DIE!" + args' <- argsToVHDLExprs argsNostate + return ([mkUncondAssign dst (head args')], []) + Right _ -> error "\nGenerate.genApplication(DataConWorkId): Can't generate dataconstructor application without an original binder" + IdInfo.DataConWrapId dc -> case dst of + -- It's a datacon. Create a record from its arguments. + Left bndr -> + case (Map.lookup (varToString f) globalNameTable) of + Just (arg_count, builder) -> + if length args == arg_count then + builder dst f args + else + error $ "\nGenerate.genApplication(DataConWrapId): Incorrect number of arguments to builtin function: " ++ pprString f ++ " Args: " ++ show args + Nothing -> error $ "\nGenerate.genApplication(DataConWrapId): Can't generate dataconwrapper: " ++ (show dc) + Right _ -> error "\nGenerate.genApplication(DataConWrapId): Can't generate dataconwrapper application without an original binder" + IdInfo.VanillaId -> + -- It's a global value imported from elsewhere. These can be builtin + -- functions. Look up the function name in the name table and execute + -- the associated builder if there is any and the argument count matches + -- (this should always be the case if it typechecks, but just to be + -- sure...). case (Map.lookup (varToString f) globalNameTable) of - Just (arg_count, builder) -> - if length args == arg_count then - builder dst f args - else - error $ "\nGenerate.genApplication(DataConWrapId): Incorrect number of arguments to builtin function: " ++ pprString f ++ " Args: " ++ show args - Nothing -> error $ "\nGenerate.genApplication: Can't generate dataconwrapper: " ++ (show dc) - Right _ -> error $ "\nGenerate.genApplication: Can't generate dataconwrapper application without an original binder" - IdInfo.VanillaId -> do - -- It's a global value imported from elsewhere. These can be builtin - -- functions. Look up the function name in the name table and execute - -- the associated builder if there is any and the argument count matches - -- (this should always be the case if it typechecks, but just to be - -- sure...). - case (Map.lookup (varToString f) globalNameTable) of - Just (arg_count, builder) -> - if length args == arg_count then - builder dst f args - else - error $ "\nGenerate.genApplication(VanillaGlobal): Incorrect number of arguments to builtin function: " ++ pprString f ++ " Args: " ++ show args - Nothing -> error $ ("\nGenerate.genApplication(VanillaGlobal): Using function from another module that is not a known builtin: " ++ (pprString f)) - IdInfo.ClassOpId cls -> do - -- FIXME: Not looking for what instance this class op is called for - -- Is quite stupid of course. - case (Map.lookup (varToString f) globalNameTable) of - Just (arg_count, builder) -> - if length args == arg_count then - builder dst f args - else - error $ "\nGenerate.genApplication(ClassOpId): Incorrect number of arguments to builtin function: " ++ pprString f ++ " Args: " ++ show args - Nothing -> error $ "\nGenerate.genApplication(ClassOpId): Using function from another module that is not a known builtin: " ++ pprString f - details -> error $ "\nGenerate.genApplication: Calling unsupported function " ++ pprString f ++ " with GlobalIdDetails " ++ pprString details - + Just (arg_count, builder) -> + if length args == arg_count then + builder dst f args + else + error $ "\nGenerate.genApplication(VanillaId): Incorrect number of arguments to builtin function: " ++ pprString f ++ " Args: " ++ show args + Nothing -> do + top <- isTopLevelBinder f + if top then + do + -- Local binder that references a top level binding. Generate a + -- component instantiation. + signature <- getEntity f + args' <- argsToVHDLExprs args + let entity_id = ent_id signature + -- TODO: Using show here isn't really pretty, but we'll need some + -- unique-ish value... + let label = "comp_ins_" ++ (either show prettyShow) dst + let portmaps = mkAssocElems args' ((either varToVHDLName id) dst) signature + return ([mkComponentInst label entity_id portmaps], [f]) + else + -- Not a top level binder, so this must be a local variable reference. + -- It should have a representable type (and thus, no arguments) and a + -- signal should be generated for it. Just generate an unconditional + -- assignment here. + -- FIXME : I DONT KNOW IF THE ABOVE COMMENT HOLDS HERE, SO FOR NOW JUST ERROR! + -- f' <- MonadState.lift tsType $ varToVHDLExpr f + -- return $ ([mkUncondAssign dst f'], []) + do errtype <- case dst of + Left bndr -> do + htype <- MonadState.lift tsType $ mkHTypeEither (Var.varType bndr) + return (show htype) + Right vhd -> return $ show vhd + error ("\nGenerate.genApplication(VanillaId): Using function from another module that is not a known builtin: " ++ (pprString f) ++ "::" ++ errtype) + IdInfo.ClassOpId cls -> + -- FIXME: Not looking for what instance this class op is called for + -- Is quite stupid of course. + case (Map.lookup (varToString f) globalNameTable) of + Just (arg_count, builder) -> + if length args == arg_count then + builder dst f args + else + error $ "\nGenerate.genApplication(ClassOpId): Incorrect number of arguments to builtin function: " ++ pprString f ++ " Args: " ++ show args + Nothing -> error $ "\nGenerate.genApplication(ClassOpId): Using function from another module that is not a known builtin: " ++ pprString f + details -> error $ "\nGenerate.genApplication: Calling unsupported function " ++ pprString f ++ " with GlobalIdDetails " ++ pprString details + else do + top <- isTopLevelBinder f + if top then + do + -- Local binder that references a top level binding. Generate a + -- component instantiation. + signature <- getEntity f + args' <- argsToVHDLExprs args + let entity_id = ent_id signature + -- TODO: Using show here isn't really pretty, but we'll need some + -- unique-ish value... + let label = "comp_ins_" ++ (either (prettyShow . varToVHDLName) prettyShow) dst + let portmaps = mkAssocElems args' ((either varToVHDLName id) dst) signature + return ([mkComponentInst label entity_id portmaps], [f]) + else + -- Not a top level binder, so this must be a local variable reference. + -- It should have a representable type (and thus, no arguments) and a + -- signal should be generated for it. Just generate an unconditional + -- assignment here. + do f' <- MonadState.lift tsType $ varToVHDLExpr f + return ([mkUncondAssign dst f'], []) + else -- Destination has empty type, don't generate anything + return ([], []) ----------------------------------------------------------------------------- -- Functions to generate functions dealing with vectors. ----------------------------------------------------------------------------- @@ -661,12 +1170,17 @@ genApplication dst f args = do vectorFunId :: Type.Type -> String -> TypeSession AST.VHDLId vectorFunId el_ty fname = do let error_msg = "\nGenerate.vectorFunId: Can not construct vector function for element: " ++ pprString el_ty - elemTM <- vhdl_ty error_msg el_ty + -- TODO: Handle the Nothing case? + elemTM_maybe <- vhdlTy error_msg el_ty + let elemTM = Maybe.fromMaybe + (error $ "\nGenerate.vectorFunId: Cannot generate vector function \"" ++ fname ++ "\" for the empty type \"" ++ (pprString el_ty) ++ "\"") + elemTM_maybe -- TODO: This should not be duplicated from mk_vector_ty. Probably but it in -- the VHDLState or something. let vectorTM = mkVHDLExtId $ "vector_" ++ (AST.fromVHDLId elemTM) - typefuns <- getA vsTypeFuns - case Map.lookup (OrdType el_ty, fname) typefuns of + typefuns <- MonadState.get tsTypeFuns + el_htype <- mkHType error_msg el_ty + case Map.lookup (UVecType el_htype, fname) typefuns of -- Function already generated, just return it Just (id, _) -> return id -- Function not generated yet, generate it @@ -674,7 +1188,7 @@ vectorFunId el_ty fname = do let functions = genUnconsVectorFuns elemTM vectorTM case lookup fname functions of Just body -> do - modA vsTypeFuns $ Map.insert (OrdType el_ty, fname) (function_id, (fst body)) + MonadState.modify tsTypeFuns $ Map.insert (UVecType el_htype, fname) (function_id, (fst body)) mapM_ (vectorFunId el_ty) (snd body) return function_id Nothing -> error $ "\nGenerate.vectorFunId: I don't know how to generate vector function " ++ fname @@ -686,13 +1200,14 @@ genUnconsVectorFuns :: AST.TypeMark -- ^ type of the vector elements -> [(String, (AST.SubProgBody, [String]))] genUnconsVectorFuns elemTM vectorTM = [ (exId, (AST.SubProgBody exSpec [] [exExpr],[])) - , (replaceId, (AST.SubProgBody replaceSpec [AST.SPVD replaceVar] [replaceExpr,replaceRet],[])) + , (replaceId, (AST.SubProgBody replaceSpec [AST.SPVD replaceVar] [replaceExpr1,replaceExpr2,replaceRet],[])) , (lastId, (AST.SubProgBody lastSpec [] [lastExpr],[])) , (initId, (AST.SubProgBody initSpec [AST.SPVD initVar] [initExpr, initRet],[])) - , (takeId, (AST.SubProgBody takeSpec [AST.SPVD takeVar] [takeExpr, takeRet],[])) + , (minimumId, (AST.SubProgBody minimumSpec [] [minimumExpr],[])) + , (takeId, (AST.SubProgBody takeSpec [AST.SPVD takeVar] [takeExpr, takeRet],[minimumId])) , (dropId, (AST.SubProgBody dropSpec [AST.SPVD dropVar] [dropExpr, dropRet],[])) , (plusgtId, (AST.SubProgBody plusgtSpec [AST.SPVD plusgtVar] [plusgtExpr, plusgtRet],[])) - , (emptyId, (AST.SubProgBody emptySpec [AST.SPCD emptyVar] [emptyExpr],[])) + , (emptyId, (AST.SubProgBody emptySpec [AST.SPVD emptyVar] [emptyExpr],[])) , (singletonId, (AST.SubProgBody singletonSpec [AST.SPVD singletonVar] [singletonRet],[])) , (copynId, (AST.SubProgBody copynSpec [AST.SPVD copynVar] [copynExpr],[])) , (selId, (AST.SubProgBody selSpec [AST.SPVD selVar] [selFor, selRet],[])) @@ -712,19 +1227,20 @@ genUnconsVectorFuns elemTM vectorTM = vec1Par = AST.unsafeVHDLBasicId "vec1" vec2Par = AST.unsafeVHDLBasicId "vec2" nPar = AST.unsafeVHDLBasicId "n" + leftPar = AST.unsafeVHDLBasicId "nLeft" + rightPar = AST.unsafeVHDLBasicId "nRight" iId = AST.unsafeVHDLBasicId "i" iPar = iId aPar = AST.unsafeVHDLBasicId "a" fPar = AST.unsafeVHDLBasicId "f" sPar = AST.unsafeVHDLBasicId "s" - resId = AST.unsafeVHDLBasicId "res" + resId = AST.unsafeVHDLBasicId "res" exSpec = AST.Function (mkVHDLExtId exId) [AST.IfaceVarDec vecPar vectorTM, - AST.IfaceVarDec ixPar naturalTM] elemTM + AST.IfaceVarDec ixPar unsignedTM] elemTM exExpr = AST.ReturnSm (Just $ AST.PrimName $ AST.NIndexed - (AST.IndexedName (AST.NSimple vecPar) [AST.PrimName $ - AST.NSimple ixPar])) + (AST.IndexedName (AST.NSimple vecPar) [genExprFCall (mkVHDLBasicId toIntegerId) (AST.PrimName $ AST.NSimple ixPar)])) replaceSpec = AST.Function (mkVHDLExtId replaceId) [ AST.IfaceVarDec vecPar vectorTM - , AST.IfaceVarDec iPar naturalTM + , AST.IfaceVarDec iPar unsignedTM , AST.IfaceVarDec aPar elemTM ] vectorTM -- variable res : fsvec_x (0 to vec'length-1); @@ -738,13 +1254,8 @@ genUnconsVectorFuns elemTM vectorTM = (AST.PrimLit "1")) ])) Nothing -- res AST.:= vec(0 to i-1) & a & vec(i+1 to length'vec-1) - replaceExpr = AST.NSimple resId AST.:= - (vecSlice (AST.PrimLit "0") (AST.PrimName (AST.NSimple iPar) AST.:-: AST.PrimLit "1") AST.:&: - AST.PrimName (AST.NSimple aPar) AST.:&: - vecSlice (AST.PrimName (AST.NSimple iPar) AST.:+: AST.PrimLit "1") - ((AST.PrimName (AST.NAttribute $ - AST.AttribName (AST.NSimple vecPar) (AST.NSimple $ mkVHDLBasicId lengthId) Nothing)) - AST.:-: AST.PrimLit "1")) + replaceExpr1 = AST.NSimple resId AST.:= AST.PrimName (AST.NSimple vecPar) + replaceExpr2 = AST.NIndexed (AST.IndexedName (AST.NSimple resId) [genExprFCall (mkVHDLBasicId toIntegerId) (AST.PrimName $ AST.NSimple iPar)]) AST.:= AST.PrimName (AST.NSimple aPar) replaceRet = AST.ReturnSm (Just $ AST.PrimName $ AST.NSimple resId) vecSlice init last = AST.PrimName (AST.NSlice (AST.SliceName @@ -752,7 +1263,7 @@ genUnconsVectorFuns elemTM vectorTM = (AST.ToRange init last))) lastSpec = AST.Function (mkVHDLExtId lastId) [AST.IfaceVarDec vecPar vectorTM] elemTM -- return vec(vec'length-1); - lastExpr = AST.ReturnSm (Just $ (AST.PrimName $ AST.NIndexed (AST.IndexedName + lastExpr = AST.ReturnSm (Just (AST.PrimName $ AST.NIndexed (AST.IndexedName (AST.NSimple vecPar) [AST.PrimName (AST.NAttribute $ AST.AttribName (AST.NSimple vecPar) (AST.NSimple $ mkVHDLBasicId lengthId) Nothing) @@ -775,21 +1286,32 @@ genUnconsVectorFuns elemTM vectorTM = AST.AttribName (AST.NSimple vecPar) (AST.NSimple $ mkVHDLBasicId lengthId) Nothing) AST.:-: AST.PrimLit "2")) initRet = AST.ReturnSm (Just $ AST.PrimName $ AST.NSimple resId) + minimumSpec = AST.Function (mkVHDLExtId minimumId) [AST.IfaceVarDec leftPar naturalTM, + AST.IfaceVarDec rightPar naturalTM ] naturalTM + minimumExpr = AST.IfSm ((AST.PrimName $ AST.NSimple leftPar) AST.:<: (AST.PrimName $ AST.NSimple rightPar)) + [AST.ReturnSm (Just $ AST.PrimName $ AST.NSimple leftPar)] + [] + (Just $ AST.Else [minimumExprRet]) + where minimumExprRet = AST.ReturnSm (Just $ AST.PrimName $ AST.NSimple rightPar) takeSpec = AST.Function (mkVHDLExtId takeId) [AST.IfaceVarDec nPar naturalTM, AST.IfaceVarDec vecPar vectorTM ] vectorTM - -- variable res : fsvec_x (0 to n-1); + -- variable res : fsvec_x (0 to (minimum (n,vec'length))-1); + minLength = AST.PrimFCall $ AST.FCall (AST.NSimple (mkVHDLExtId minimumId)) + [Nothing AST.:=>: AST.ADExpr (AST.PrimName $ AST.NSimple nPar) + ,Nothing AST.:=>: AST.ADExpr (AST.PrimName (AST.NAttribute $ + AST.AttribName (AST.NSimple vecPar) (AST.NSimple $ mkVHDLBasicId lengthId) Nothing))] takeVar = AST.VarDec resId (AST.SubtypeIn vectorTM (Just $ AST.ConstraintIndex $ AST.IndexConstraint [AST.ToRange (AST.PrimLit "0") - ((AST.PrimName (AST.NSimple nPar)) AST.:-: + (minLength AST.:-: (AST.PrimLit "1")) ])) Nothing -- res AST.:= vec(0 to n-1) takeExpr = AST.NSimple resId AST.:= - (vecSlice (AST.PrimLit "1") - (AST.PrimName (AST.NSimple $ nPar) AST.:-: AST.PrimLit "1")) + (vecSlice (AST.PrimLit "0") + (minLength AST.:-: AST.PrimLit "1")) takeRet = AST.ReturnSm (Just $ AST.PrimName $ AST.NSimple resId) dropSpec = AST.Function (mkVHDLExtId dropId) [AST.IfaceVarDec nPar naturalTM, AST.IfaceVarDec vecPar vectorTM ] vectorTM @@ -827,9 +1349,11 @@ genUnconsVectorFuns elemTM vectorTM = plusgtRet = AST.ReturnSm (Just $ AST.PrimName $ AST.NSimple resId) emptySpec = AST.Function (mkVHDLExtId emptyId) [] vectorTM emptyVar = - AST.ConstDec resId - (AST.SubtypeIn vectorTM Nothing) - (Just $ AST.PrimLit "\"\"") + AST.VarDec resId + (AST.SubtypeIn vectorTM + (Just $ AST.ConstraintIndex $ AST.IndexConstraint + [AST.ToRange (AST.PrimLit "0") (AST.PrimLit "-1")])) + Nothing emptyExpr = AST.ReturnSm (Just $ AST.PrimName (AST.NSimple resId)) singletonSpec = AST.Function (mkVHDLExtId singletonId) [AST.IfaceVarDec aPar elemTM ] vectorTM @@ -873,7 +1397,7 @@ genUnconsVectorFuns elemTM vectorTM = -- for i res'range loop -- res(i) := vec(f+i*s); -- end loop; - selFor = AST.ForSM iId (AST.AttribRange $ AST.AttribName (AST.NSimple resId) (AST.NSimple $ rangeId) Nothing) [selAssign] + selFor = AST.ForSM iId (AST.AttribRange $ AST.AttribName (AST.NSimple resId) (AST.NSimple rangeId) Nothing) [selAssign] -- res(i) := vec(f+i*s); selAssign = let origExp = AST.PrimName (AST.NSimple fPar) AST.:+: (AST.PrimName (AST.NSimple iId) AST.:*: @@ -1024,7 +1548,7 @@ genUnconsVectorFuns elemTM vectorTM = -- res(vec'length-i-1) := vec(i); -- end loop; reverseFor = - AST.ForSM iId (AST.AttribRange $ AST.AttribName (AST.NSimple resId) (AST.NSimple $ rangeId) Nothing) [reverseAssign] + AST.ForSM iId (AST.AttribRange $ AST.AttribName (AST.NSimple resId) (AST.NSimple rangeId) Nothing) [reverseAssign] -- res(vec'length-i-1) := vec(i); reverseAssign = AST.NIndexed (AST.IndexedName (AST.NSimple resId) [destExp]) AST.:= (AST.PrimName $ AST.NIndexed (AST.IndexedName (AST.NSimple vecPar) @@ -1041,11 +1565,25 @@ genUnconsVectorFuns elemTM vectorTM = -- A table of builtin functions ----------------------------------------------------------------------------- +-- A function that generates VHDL for a builtin function +type BuiltinBuilder = + (Either CoreSyn.CoreBndr AST.VHDLName) -- ^ The destination signal and it's original type + -> CoreSyn.CoreBndr -- ^ The function called + -> [Either CoreSyn.CoreExpr AST.Expr] -- ^ The value arguments passed (excluding type and + -- dictionary arguments). + -> TranslatorSession ([AST.ConcSm], [CoreSyn.CoreBndr]) + -- ^ The corresponding VHDL concurrent statements and entities + -- instantiated. + +-- A map of a builtin function to VHDL function builder +type NameTable = Map.Map String (Int, BuiltinBuilder ) + -- | The builtin functions we support. Maps a name to an argument count and a --- builder function. +-- builder function. If you add a name to this map, don't forget to add +-- it to VHDL.Constants/builtinIds as well. globalNameTable :: NameTable globalNameTable = Map.fromList - [ (exId , (2, genFCall False ) ) + [ (exId , (2, genFCall True ) ) , (replaceId , (3, genFCall False ) ) , (headId , (1, genFCall True ) ) , (lastId , (1, genFCall True ) ) @@ -1083,13 +1621,30 @@ globalNameTable = Map.fromList , (hwandId , (2, genOperator2 AST.And ) ) , (hworId , (2, genOperator2 AST.Or ) ) , (hwnotId , (1, genOperator1 AST.Not ) ) + , (equalityId , (2, genOperator2 (AST.:=:) ) ) + , (inEqualityId , (2, genOperator2 (AST.:/=:) ) ) + , (ltId , (2, genOperator2 (AST.:<:) ) ) + , (lteqId , (2, genOperator2 (AST.:<=:) ) ) + , (gtId , (2, genOperator2 (AST.:>:) ) ) + , (gteqId , (2, genOperator2 (AST.:>=:) ) ) + , (boolOrId , (2, genOperator2 AST.Or ) ) + , (boolAndId , (2, genOperator2 AST.And ) ) + , (boolNot , (1, genOperator1 AST.Not ) ) , (plusId , (2, genOperator2 (AST.:+:) ) ) - , (timesId , (2, genOperator2 (AST.:*:) ) ) + , (timesId , (2, genTimes ) ) , (negateId , (1, genNegation ) ) , (minusId , (2, genOperator2 (AST.:-:) ) ) , (fromSizedWordId , (1, genFromSizedWord ) ) + , (fromRangedWordId , (1, genFromRangedWord ) ) , (fromIntegerId , (1, genFromInteger ) ) - , (resizeId , (1, genResize ) ) + , (resizeWordId , (1, genResize ) ) + , (resizeIntId , (1, genResize ) ) , (sizedIntId , (1, genSizedInt ) ) - , (tfvecId , (1, genTFVec ) ) + , (smallIntegerId , (1, genFromInteger ) ) + , (fstId , (1, genFst ) ) + , (sndId , (1, genSnd ) ) + , (blockRAMId , (5, genBlockRAM ) ) + , (splitId , (1, genSplit ) ) + --, (tfvecId , (1, genTFVec ) ) + , (minimumId , (2, error "\nFunction name: \"minimum\" is used internally, use another name")) ]