X-Git-Url: https://git.stderr.nl/gitweb?a=blobdiff_plain;f=c%CE%BBash%2FCLasH%2FNormalize.hs;h=2c7a95e16b99b25987f13d8de875f498ae780ef0;hb=a97a53c406ca4da95059a95a4f3d6452eb87b018;hp=ec7a66bf991ea5f5ff65fc5b3ac231ec7123ab82;hpb=c3fd4c4ef1372598fa715b6e9fc48f1eda57d4ce;p=matthijs%2Fmaster-project%2Fc%CE%BBash.git diff --git "a/c\316\273ash/CLasH/Normalize.hs" "b/c\316\273ash/CLasH/Normalize.hs" index ec7a66b..2c7a95e 100644 --- "a/c\316\273ash/CLasH/Normalize.hs" +++ "b/c\316\273ash/CLasH/Normalize.hs" @@ -64,8 +64,10 @@ etatop = notappargs ("eta", eta) -- β-reduction -------------------------------- beta, betatop :: Transform --- Substitute arg for x in expr -beta (App (Lam x expr) arg) = change $ substitute [(x, arg)] expr +-- Substitute arg for x in expr. For value lambda's, also clone before +-- substitution. +beta (App (Lam x expr) arg) | CoreSyn.isTyVar x = setChanged >> substitute x arg expr + | otherwise = setChanged >> substitute_clone x arg expr -- Propagate the application into the let beta (App (Let binds expr) arg) = change $ Let binds (App expr arg) -- Propagate the application into each of the alternatives @@ -303,41 +305,63 @@ letmergetop = everywhere ("letmerge", letmerge) -} -------------------------------- --- Function inlining +-- Non-representable binding inlining -------------------------------- --- Remove a = B bindings, with B :: a -> b, or B :: forall x . T, from let --- expressions everywhere. This means that any value that still needs to be --- applied to something else (polymorphic values need to be applied to a --- Type) will be inlined, and will eventually be applied to all their --- arguments. +-- Remove a = B bindings, with B of a non-representable type, from let +-- expressions everywhere. This means that any value that we can't generate a +-- signal for, will be inlined and hopefully turned into something we can +-- represent. -- -- This is a tricky function, which is prone to create loops in the -- transformations. To fix this, we make sure that no transformation will --- create a new let binding with a function type. These other transformations --- will just not work on those function-typed values at first, but the other --- transformations (in particular β-reduction) should make sure that the type --- of those values eventually becomes primitive. +-- create a new let binding with a non-representable type. These other +-- transformations will just not work on those function-typed values at first, +-- but the other transformations (in particular β-reduction) should make sure +-- that the type of those values eventually becomes representable. inlinenonreptop :: Transform inlinenonreptop = everywhere ("inlinenonrep", inlinebind ((Monad.liftM not) . isRepr . snd)) +-------------------------------- +-- Top level function inlining +-------------------------------- +-- This transformation inlines top level bindings that have been generated by +-- the compiler and are really simple. Really simple currently means that the +-- normalized form only contains a single binding, which catches most of the +-- cases where a top level function is created that simply calls a type class +-- method with a type and dictionary argument, e.g. +-- fromInteger = GHC.Num.fromInteger (SizedWord D8) $dNum +-- which is later called using simply +-- fromInteger (smallInteger 10) +-- By inlining such calls to simple, compiler generated functions, we prevent +-- huge amounts of trivial components in the VHDL output, which the user never +-- wanted. We never inline user-defined functions, since we want to preserve +-- all structure defined by the user. Currently this includes all functions +-- that were created by funextract, since we would get loops otherwise. +-- +-- Note that "defined by the compiler" isn't completely watertight, since GHC +-- doesn't seem to set all those names as "system names", we apply some +-- guessing here. inlinetoplevel, inlinetopleveltop :: Transform -- Any system name is candidate for inlining. Never inline user-defined --- functions, to preserver structure. +-- functions, to preserve structure. inlinetoplevel expr@(Var f) | not $ isUserDefined f = do + norm <- isNormalizeable f -- See if this is a top level binding for which we have a body body_maybe <- Trans.lift $ getGlobalBind f - case body_maybe of - Just body -> do + if norm && Maybe.isJust body_maybe + then do -- Get the normalized version norm <- Trans.lift $ getNormalized f if needsInline norm - then - change norm + then do + -- Regenerate all uniques in the to-be-inlined expression + norm_uniqued <- Trans.lift $ genUniques norm + change norm_uniqued else return expr - -- No body, this is probably a local variable or builtin or external - -- function. - Nothing -> return expr + else + -- No body or not normalizeable. + return expr -- Leave all other expressions unchanged inlinetoplevel expr = return expr inlinetopleveltop = everywhere ("inlinetoplevel", inlinetoplevel) @@ -374,6 +398,31 @@ scrutsimpl expr = return expr -- Perform this transform everywhere scrutsimpltop = everywhere ("scrutsimpl", scrutsimpl) +-------------------------------- +-- Scrutinee binder removal +-------------------------------- +-- A case expression can have an extra binder, to which the scrutinee is bound +-- after bringing it to WHNF. This is used for forcing evaluation of strict +-- arguments. Since strictness does not matter for us (rather, everything is +-- sort of strict), this binder is ignored when generating VHDL, and must thus +-- be wild in the normal form. +scrutbndrremove, scrutbndrremovetop :: Transform +-- If the scrutinee is already simple, and the bndr is not wild yet, replace +-- all occurences of the binder with the scrutinee variable. +scrutbndrremove (Case (Var scrut) bndr ty alts) | bndr_used = do + alts' <- mapM subs_bndr alts + return $ Case (Var scrut) wild ty alts' + where + is_used (_, _, expr) = expr_uses_binders [bndr] expr + bndr_used = or $ map is_used alts + subs_bndr (con, bndrs, expr) = do + expr' <- substitute bndr (Var scrut) expr + return (con, bndrs, expr') + wild = MkCore.mkWildBinder (Id.idType bndr) +-- Leave all other expressions unchanged +scrutbndrremove expr = return expr +scrutbndrremovetop = everywhere ("scrutbndrremove", scrutbndrremove) + -------------------------------- -- Case binder wildening -------------------------------- @@ -427,7 +476,7 @@ casesimpl expr@(Case scrut b ty alts) = do -- binding containing a case expression. dobndr :: CoreBndr -> Int -> TransformMonad (CoreBndr, Maybe (CoreBndr, CoreExpr)) dobndr b i = do - repr <- isRepr (Var b) + repr <- isRepr b -- Is b wild (e.g., not a free var of expr. Since b is only in scope -- in expr, this means that b is unused if expr does not use it.) let wild = not (VarSet.elemVarSet b free_vars) @@ -651,7 +700,10 @@ simplrestop expr@(Lam _ _) = return expr simplrestop expr@(Let _ _) = return expr simplrestop expr = do local_var <- Trans.lift $ is_local_var expr - if local_var + -- Don't extract values that are not representable, to prevent loops with + -- inlinenonrep + repr <- isRepr expr + if local_var || not repr then return expr else do @@ -665,7 +717,7 @@ simplrestop expr = do -- What transforms to run? -transforms = [inlinetopleveltop, argproptop, funextracttop, etatop, betatop, castproptop, letremovesimpletop, letderectop, letremovetop, letsimpltop, letflattop, scrutsimpltop, casesimpltop, caseremovetop, inlinenonreptop, appsimpltop, letremoveunusedtop, castsimpltop, lambdasimpltop, simplrestop] +transforms = [inlinetopleveltop, argproptop, funextracttop, etatop, betatop, castproptop, letremovesimpletop, letderectop, letremovetop, letsimpltop, letflattop, scrutsimpltop, scrutbndrremovetop, casesimpltop, caseremovetop, inlinenonreptop, appsimpltop, letremoveunusedtop, castsimpltop, lambdasimpltop, simplrestop] -- | Returns the normalized version of the given function. getNormalized :: @@ -689,9 +741,10 @@ normalizeExpr :: -> TranslatorSession CoreSyn.CoreExpr -- ^ The normalized expression normalizeExpr what expr = do + expr_uniqued <- genUniques expr -- Normalize this expression - trace (what ++ " before normalization:\n\n" ++ showSDoc ( ppr expr ) ++ "\n") $ return () - expr' <- dotransforms transforms expr + trace (what ++ " before normalization:\n\n" ++ showSDoc ( ppr expr_uniqued ) ++ "\n") $ return () + expr' <- dotransforms transforms expr_uniqued trace ("\n" ++ what ++ " after normalization:\n\n" ++ showSDoc ( ppr expr')) $ return () return expr'