X-Git-Url: https://git.stderr.nl/gitweb?a=blobdiff_plain;f=VHDL.hs;h=8eb130fad8e0d11e016e3222e011f55b36977e05;hb=8a17f35807fb35ee4d2a4c35c75e1cf99066f94d;hp=d2e93897811d0bbb13897b6de2d8758afd20a816;hpb=82e90697d7c570456f7bb0df8e4dc832ca242f74;p=matthijs%2Fmaster-project%2Fc%CE%BBash.git diff --git a/VHDL.hs b/VHDL.hs index d2e9389..8eb130f 100644 --- a/VHDL.hs +++ b/VHDL.hs @@ -3,100 +3,155 @@ -- module VHDL where +-- Standard modules import qualified Data.Foldable as Foldable +import qualified Data.List as List +import qualified Data.Map as Map import qualified Maybe import qualified Control.Monad as Monad +import qualified Control.Arrow as Arrow +import qualified Control.Monad.Trans.State as State +import qualified Data.Traversable as Traversable +import qualified Data.Monoid as Monoid +import Data.Accessor +import qualified Data.Accessor.MonadState as MonadState +import Text.Regex.Posix +import Debug.Trace + +-- ForSyDe +import qualified ForSyDe.Backend.VHDL.AST as AST +-- GHC API +import CoreSyn import qualified Type -import qualified TysWiredIn import qualified Name +import qualified OccName +import qualified Var import qualified TyCon +import qualified DataCon import Outputable ( showSDoc, ppr ) -import qualified ForSyDe.Backend.VHDL.AST as AST - +-- Local imports import VHDLTypes import Flatten import FlattenTypes import TranslatorTypes +import HsValueMap import Pretty - -getDesignFiles :: VHDLState [AST.DesignFile] -getDesignFiles = do - -- Extract the library units generated from all the functions in the - -- session. - funcs <- getFuncs - let units = Maybe.mapMaybe getLibraryUnits funcs - let context = [ - AST.Library $ mkVHDLId "IEEE", - AST.Use $ (AST.NSimple $ mkVHDLId "IEEE.std_logic_1164") AST.:.: AST.All] - return $ map (\(ent, arch) -> AST.DesignFile context [ent, arch]) units +import CoreTools +import Constants +import Generate +import GlobalNameTable + +createDesignFiles :: + [(CoreSyn.CoreBndr, CoreSyn.CoreExpr)] + -> [(AST.VHDLId, AST.DesignFile)] + +createDesignFiles binds = + (mkVHDLBasicId "types", AST.DesignFile ieee_context [type_package]) : + map (Arrow.second $ AST.DesignFile full_context) units + where + init_session = VHDLSession Map.empty Map.empty builtin_funcs globalNameTable + (units, final_session) = + State.runState (createLibraryUnits binds) init_session + ty_decls = Map.elems (final_session ^. vsTypes) + ieee_context = [ + AST.Library $ mkVHDLBasicId "IEEE", + mkUseAll ["IEEE", "std_logic_1164"], + mkUseAll ["IEEE", "numeric_std"] + ] + full_context = + mkUseAll ["work", "types"] + : ieee_context + type_package = AST.LUPackageDec $ AST.PackageDec (mkVHDLBasicId "types") (map (AST.PDITD . snd) ty_decls) + +-- Create a use foo.bar.all statement. Takes a list of components in the used +-- name. Must contain at least two components +mkUseAll :: [String] -> AST.ContextItem +mkUseAll ss = + AST.Use $ from AST.:.: AST.All + where + base_prefix = (AST.NSimple $ mkVHDLBasicId $ head ss) + from = foldl select base_prefix (tail ss) + select prefix s = AST.NSelected $ prefix AST.:.: (AST.SSimple $ mkVHDLBasicId s) + +createLibraryUnits :: + [(CoreSyn.CoreBndr, CoreSyn.CoreExpr)] + -> VHDLState [(AST.VHDLId, [AST.LibraryUnit])] + +createLibraryUnits binds = do + entities <- Monad.mapM createEntity binds + archs <- Monad.mapM createArchitecture binds + return $ zipWith + (\ent arch -> + let AST.EntityDec id _ = ent in + (id, [AST.LUEntity ent, AST.LUArch arch]) + ) + entities archs + -- | Create an entity for a given function createEntity :: - HsFunction -- | The function signature - -> FuncData -- | The function data collected so far - -> VHDLState () - -createEntity hsfunc fdata = - let func = flatFunc fdata in - case func of - -- Skip (builtin) functions without a FlatFunction - Nothing -> do return () - -- Create an entity for all other functions - Just flatfunc -> - - let - sigs = flat_sigs flatfunc - args = flat_args flatfunc - res = flat_res flatfunc - args' = map (fmap (mkMap sigs)) args - res' = fmap (mkMap sigs) res - ent_decl' = createEntityAST hsfunc args' res' - AST.EntityDec entity_id _ = ent_decl' - entity' = Entity entity_id args' res' (Just ent_decl') - in - setEntity hsfunc entity' + (CoreSyn.CoreBndr, CoreSyn.CoreExpr) -- | The function + -> VHDLState AST.EntityDec -- | The resulting entity + +createEntity (fname, expr) = do + -- Strip off lambda's, these will be arguments + let (args, letexpr) = CoreSyn.collectBinders expr + args' <- Monad.mapM mkMap args + -- There must be a let at top level + let (CoreSyn.Let binds (CoreSyn.Var res)) = letexpr + res' <- mkMap res + let ent_decl' = createEntityAST fname args' res' + let AST.EntityDec entity_id _ = ent_decl' + let signature = Entity entity_id args' res' + modA vsSignatures (Map.insert (bndrToString fname) signature) + return ent_decl' where - mkMap :: Eq id => [(id, SignalInfo)] -> id -> Maybe (AST.VHDLId, AST.TypeMark) - mkMap sigmap id = - if isPortSigUse $ sigUse info - then - Just (mkVHDLId nm, vhdl_ty ty) - else - Nothing - where - info = Maybe.fromMaybe - (error $ "Signal not found in the name map? This should not happen!") - (lookup id sigmap) - nm = Maybe.fromMaybe - (error $ "Signal not named? This should not happen!") - (sigName info) - ty = sigTy info + mkMap :: + --[(SignalId, SignalInfo)] + CoreSyn.CoreBndr + -> VHDLState VHDLSignalMapElement + -- We only need the vsTypes element from the state + mkMap = (\bndr -> + let + --info = Maybe.fromMaybe + -- (error $ "Signal not found in the name map? This should not happen!") + -- (lookup id sigmap) + -- Assume the bndr has a valid VHDL id already + id = bndrToVHDLId bndr + ty = Var.varType bndr + in + if True -- isPortSigUse $ sigUse info + then do + type_mark <- vhdl_ty ty + return $ Just (id, type_mark) + else + return $ Nothing + ) -- | Create the VHDL AST for an entity createEntityAST :: - HsFunction -- | The signature of the function we're working with - -> [VHDLSignalMap] -- | The entity's arguments - -> VHDLSignalMap -- | The entity's result - -> AST.EntityDec -- | The entity with the ent_decl filled in as well + CoreSyn.CoreBndr -- | The name of the function + -> [VHDLSignalMapElement] -- | The entity's arguments + -> VHDLSignalMapElement -- | The entity's result + -> AST.EntityDec -- | The entity with the ent_decl filled in as well -createEntityAST hsfunc args res = +createEntityAST name args res = AST.EntityDec vhdl_id ports where - vhdl_id = mkEntityId hsfunc - ports = concatMap (mapToPorts AST.In) args - ++ mapToPorts AST.Out res - ++ clk_port - mapToPorts :: AST.Mode -> VHDLSignalMap -> [AST.IfaceSigDec] - mapToPorts mode m = - Maybe.catMaybes $ map (mkIfaceSigDec mode) (Foldable.toList m) + -- Create a basic Id, since VHDL doesn't grok filenames with extended Ids. + vhdl_id = mkVHDLBasicId $ bndrToString name + ports = Maybe.catMaybes $ + map (mkIfaceSigDec AST.In) args + ++ [mkIfaceSigDec AST.Out res] + ++ [clk_port] -- Add a clk port if we have state - clk_port = if hasState hsfunc + clk_port = if True -- hasState hsfunc then - [AST.IfaceSigDec (mkVHDLId "clk") AST.In VHDL.std_logic_ty] + Just $ AST.IfaceSigDec (mkVHDLExtId "clk") AST.In VHDL.std_logic_ty else - [] + Nothing -- | Create a port declaration mkIfaceSigDec :: @@ -110,115 +165,203 @@ mkIfaceSigDec _ Nothing = Nothing -- | Generate a VHDL entity name for the given hsfunc mkEntityId hsfunc = -- TODO: This doesn't work for functions with multiple signatures! - mkVHDLId $ hsFuncName hsfunc + -- Use a Basic Id, since using extended id's for entities throws off + -- precision and causes problems when generating filenames. + mkVHDLBasicId $ hsFuncName hsfunc -- | Create an architecture for a given function createArchitecture :: - HsFunction -- | The function signature - -> FuncData -- | The function data collected so far - -> VHDLState () - -createArchitecture hsfunc fdata = - let func = flatFunc fdata in - case func of - -- Skip (builtin) functions without a FlatFunction - Nothing -> do return () - -- Create an architecture for all other functions - Just flatfunc -> do - let sigs = flat_sigs flatfunc - let args = flat_args flatfunc - let res = flat_res flatfunc - let defs = flat_defs flatfunc - let entity_id = Maybe.fromMaybe - (error $ "Building architecture without an entity? This should not happen!") - (getEntityId fdata) - -- Create signal declarations for all signals that are not in args and - -- res - let sig_decs = Maybe.catMaybes $ map (mkSigDec . snd) sigs - -- Create concurrent statements for all signal definitions - statements <- mapM (mkConcSm sigs) defs - let procs = map mkStateProcSm (getOwnStates hsfunc flatfunc) - let procs' = map AST.CSPSm procs - let arch = AST.ArchBody (mkVHDLId "structural") (AST.NSimple entity_id) (map AST.BDISD sig_decs) (statements ++ procs') - setArchitecture hsfunc arch - + (CoreSyn.CoreBndr, CoreSyn.CoreExpr) -- ^ The function + -> VHDLState AST.ArchBody -- ^ The architecture for this function + +createArchitecture (fname, expr) = do + --signaturemap <- getA vsSignatures + --let signature = Maybe.fromMaybe + -- (error $ "Generating architecture for function " ++ (prettyShow hsfunc) ++ "without signature? This should not happen!") + -- (Map.lookup hsfunc signaturemap) + let entity_id = mkVHDLBasicId $ bndrToString fname + -- Strip off lambda's, these will be arguments + let (args, letexpr) = CoreSyn.collectBinders expr + -- There must be a let at top level + let (CoreSyn.Let (CoreSyn.Rec binds) res) = letexpr + + -- Create signal declarations for all internal and state signals + sig_dec_maybes <- mapM (mkSigDec' . fst) binds + let sig_decs = Maybe.catMaybes $ sig_dec_maybes + + statements <- Monad.mapM mkConcSm binds + return $ AST.ArchBody (mkVHDLBasicId "structural") (AST.NSimple entity_id) (map AST.BDISD sig_decs) (statements ++ procs') + where + procs = map mkStateProcSm [] -- (makeStatePairs flatfunc) + procs' = map AST.CSPSm procs + -- mkSigDec only uses vsTypes from the state + mkSigDec' = mkSigDec + +-- | Looks up all pairs of old state, new state signals, together with +-- the state id they represent. +makeStatePairs :: FlatFunction -> [(StateId, SignalInfo, SignalInfo)] +makeStatePairs flatfunc = + [(Maybe.fromJust $ oldStateId $ sigUse old_info, old_info, new_info) + | old_info <- map snd (flat_sigs flatfunc) + , new_info <- map snd (flat_sigs flatfunc) + -- old_info must be an old state (and, because of the next equality, + -- new_info must be a new state). + , Maybe.isJust $ oldStateId $ sigUse old_info + -- And the state numbers must match + , (oldStateId $ sigUse old_info) == (newStateId $ sigUse new_info)] + + -- Replace the second tuple element with the corresponding SignalInfo + --args_states = map (Arrow.second $ signalInfo sigs) args mkStateProcSm :: (StateId, SignalInfo, SignalInfo) -> AST.ProcSm mkStateProcSm (num, old, new) = AST.ProcSm label [clk] [statement] where - label = mkVHDLId $ "state_" ++ (show num) - clk = mkVHDLId "clk" - rising_edge = AST.NSimple $ mkVHDLId "rising_edge" + label = mkVHDLExtId $ "state_" ++ (show num) + clk = mkVHDLExtId "clk" + rising_edge = AST.NSimple $ mkVHDLBasicId "rising_edge" wform = AST.Wform [AST.WformElem (AST.PrimName $ AST.NSimple $ getSignalId new) Nothing] assign = AST.SigAssign (AST.NSimple $ getSignalId old) wform rising_edge_clk = AST.PrimFCall $ AST.FCall rising_edge [Nothing AST.:=>: (AST.ADName $ AST.NSimple clk)] statement = AST.IfSm rising_edge_clk [assign] [] Nothing -mkSigDec :: SignalInfo -> Maybe AST.SigDec -mkSigDec info = - let use = sigUse info in - if isInternalSigUse use || isStateSigUse use then - Just $ AST.SigDec (getSignalId info) (vhdl_ty ty) Nothing +mkSigDec :: CoreSyn.CoreBndr -> VHDLState (Maybe AST.SigDec) +mkSigDec bndr = + if True then do --isInternalSigUse use || isStateSigUse use then do + type_mark <- vhdl_ty $ Var.varType bndr + return $ Just (AST.SigDec (bndrToVHDLId bndr) type_mark Nothing) else - Nothing - where - ty = sigTy info + return Nothing -- | Creates a VHDL Id from a named SignalInfo. Errors out if the SignalInfo -- is not named. getSignalId :: SignalInfo -> AST.VHDLId getSignalId info = - mkVHDLId $ Maybe.fromMaybe + mkVHDLExtId $ Maybe.fromMaybe (error $ "Unnamed signal? This should not happen!") (sigName info) --- | Transforms a signal definition into a VHDL concurrent statement +-- | Transforms a core binding into a VHDL concurrent statement mkConcSm :: - [(SignalId, SignalInfo)] -- | The signals in the current architecture - -> SigDef -- | The signal definition - -> VHDLState AST.ConcSm -- | The corresponding VHDL component instantiation. - -mkConcSm sigs (FApp hsfunc args res) = do - fdata_maybe <- getFunc hsfunc - let fdata = Maybe.fromMaybe - (error $ "Using function '" ++ (prettyShow hsfunc) ++ "' that is not in the session? This should not happen!") - fdata_maybe - let entity = Maybe.fromMaybe - (error $ "Using function '" ++ (prettyShow hsfunc) ++ "' without entity declaration? This should not happen!") - (funcEntity fdata) - let entity_id = ent_id entity - label <- uniqueName (AST.fromVHDLId entity_id) - let portmaps = mkAssocElems sigs args res entity - return $ AST.CSISm $ AST.CompInsSm (mkVHDLId label) (AST.IUEntity (AST.NSimple entity_id)) (AST.PMapAspect portmaps) - -mkConcSm sigs (UncondDef src dst) = do - let src_expr = vhdl_expr src + (CoreSyn.CoreBndr, CoreSyn.CoreExpr) -- ^ The binding to process + -> VHDLState AST.ConcSm -- ^ The corresponding VHDL component instantiation. + +mkConcSm (bndr, app@(CoreSyn.App _ _))= do + signatures <- getA vsSignatures + funSignatures <- getA vsNameTable + let (CoreSyn.Var f, args) = CoreSyn.collectArgs app + case (Map.lookup (bndrToString f) funSignatures) of + Just funSignature -> + let + sigs = map (bndrToString.varBndr) args + sigsNames = map (\signal -> (AST.PrimName (AST.NSimple (mkVHDLExtId signal)))) sigs + func = (snd funSignature) sigsNames + src_wform = AST.Wform [AST.WformElem func Nothing] + dst_name = AST.NSimple (mkVHDLExtId (bndrToString bndr)) + assign = dst_name AST.:<==: (AST.ConWforms [] src_wform Nothing) + in + return $ AST.CSSASm assign + Nothing -> + let + signature = Maybe.fromMaybe + (error $ "Using function '" ++ (bndrToString f) ++ "' without signature? This should not happen!") + (Map.lookup (bndrToString f) signatures) + entity_id = ent_id signature + label = bndrToString bndr + -- Add a clk port if we have state + --clk_port = Maybe.fromJust $ mkAssocElem (Just $ mkVHDLExtId "clk") "clk" + --portmaps = mkAssocElems sigs args res signature ++ (if hasState hsfunc then [clk_port] else []) + portmaps = mkAssocElems args bndr signature + in + return $ AST.CSISm $ AST.CompInsSm (mkVHDLExtId label) (AST.IUEntity (AST.NSimple entity_id)) (AST.PMapAspect portmaps) + +-- GHC generates some funny "r = r" bindings in let statements before +-- simplification. This outputs some dummy ConcSM for these, so things will at +-- least compile for now. +mkConcSm (bndr, CoreSyn.Var _) = return $ AST.CSPSm $ AST.ProcSm (mkVHDLBasicId "unused") [] [] + +-- A single alt case must be a selector +mkConcSm (bndr, (Case (Var scrut) b ty [alt])) = error "Single case alt not supported yet" + +-- Multiple case alt are be conditional assignments and have only wild +-- binders in the alts and only variables in the case values and a variable +-- for a scrutinee. We check the constructor of the second alt, since the +-- first is the default case, if there is any. +mkConcSm (bndr, (Case (Var scrut) b ty [(_, _, Var false), (con, _, Var true)])) = + let + cond_expr = (varToVHDLExpr scrut) AST.:=: (conToVHDLExpr con) + true_expr = (varToVHDLExpr true) + false_expr = (varToVHDLExpr false) + false_wform = AST.Wform [AST.WformElem false_expr Nothing] + true_wform = AST.Wform [AST.WformElem true_expr Nothing] + whenelse = AST.WhenElse true_wform cond_expr + dst_name = AST.NSimple (bndrToVHDLId bndr) + assign = dst_name AST.:<==: (AST.ConWforms [whenelse] false_wform Nothing) + in + return $ AST.CSSASm assign +mkConcSm (_, (Case (Var _) _ _ alts)) = error "VHDL.mkConcSm Not in normal form: Case statement with more than two alternatives" +mkConcSm (_, Case _ _ _ _) = error "VHDL.mkConcSm Not in normal form: Case statement has does not have a simple variable as scrutinee" + +-- Turn a variable reference into a AST expression +varToVHDLExpr :: Var.Var -> AST.Expr +varToVHDLExpr var = AST.PrimName $ AST.NSimple $ bndrToVHDLId var + +-- Turn a constructor into an AST expression. For dataconstructors, this is +-- only the constructor itself, not any arguments it has. Should not be called +-- with a DEFAULT constructor. +conToVHDLExpr :: CoreSyn.AltCon -> AST.Expr +conToVHDLExpr (DataAlt dc) = AST.PrimLit lit + where + tycon = DataCon.dataConTyCon dc + tyname = TyCon.tyConName tycon + dcname = DataCon.dataConName dc + lit = case Name.getOccString tyname of + -- TODO: Do something more robust than string matching + "Bit" -> case Name.getOccString dcname of "High" -> "'1'"; "Low" -> "'0'" + "Bool" -> case Name.getOccString dcname of "True" -> "true"; "False" -> "false" +conToVHDLExpr (LitAlt _) = error "VHDL.conToVHDLExpr Literals not support in case alternatives yet" +conToVHDLExpr DEFAULT = error "VHDL.conToVHDLExpr DEFAULT alternative should not occur here!" + + + +{- +mkConcSm sigs (UncondDef src dst) _ = do + src_expr <- vhdl_expr src let src_wform = AST.Wform [AST.WformElem src_expr Nothing] let dst_name = AST.NSimple (getSignalId $ signalInfo sigs dst) let assign = dst_name AST.:<==: (AST.ConWforms [] src_wform Nothing) return $ AST.CSSASm assign where - vhdl_expr (Left id) = mkIdExpr sigs id + vhdl_expr (Left id) = return $ mkIdExpr sigs id vhdl_expr (Right expr) = case expr of (EqLit id lit) -> - (mkIdExpr sigs id) AST.:=: (AST.PrimLit lit) - (Literal lit) -> - AST.PrimLit lit + return $ (mkIdExpr sigs id) AST.:=: (AST.PrimLit lit) + (Literal lit Nothing) -> + return $ AST.PrimLit lit + (Literal lit (Just ty)) -> do + -- Create a cast expression, which is just a function call using the + -- type name as the function name. + let litexpr = AST.PrimLit lit + ty_id <- vhdl_ty ty + let ty_name = AST.NSimple ty_id + let args = [Nothing AST.:=>: (AST.ADExpr litexpr)] + return $ AST.PrimFCall $ AST.FCall ty_name args (Eq a b) -> - (mkIdExpr sigs a) AST.:=: (mkIdExpr sigs b) - -mkConcSm sigs (CondDef cond true false dst) = do - let cond_expr = mkIdExpr sigs cond - let true_expr = mkIdExpr sigs true - let false_expr = mkIdExpr sigs false - let false_wform = AST.Wform [AST.WformElem false_expr Nothing] - let true_wform = AST.Wform [AST.WformElem true_expr Nothing] - let whenelse = AST.WhenElse true_wform cond_expr - let dst_name = AST.NSimple (getSignalId $ signalInfo sigs dst) - let assign = dst_name AST.:<==: (AST.ConWforms [whenelse] false_wform Nothing) - return $ AST.CSSASm assign - + return $ (mkIdExpr sigs a) AST.:=: (mkIdExpr sigs b) + +mkConcSm sigs (CondDef cond true false dst) _ = + let + cond_expr = mkIdExpr sigs cond + true_expr = mkIdExpr sigs true + false_expr = mkIdExpr sigs false + false_wform = AST.Wform [AST.WformElem false_expr Nothing] + true_wform = AST.Wform [AST.WformElem true_expr Nothing] + whenelse = AST.WhenElse true_wform cond_expr + dst_name = AST.NSimple (getSignalId $ signalInfo sigs dst) + assign = dst_name AST.:<==: (AST.ConWforms [whenelse] false_wform Nothing) + in + return $ AST.CSSASm assign +-} -- | Turn a SignalId into a VHDL Expr mkIdExpr :: [(SignalId, SignalInfo)] -> SignalId -> AST.Expr mkIdExpr sigs id = @@ -226,27 +369,29 @@ mkIdExpr sigs id = AST.PrimName src_name mkAssocElems :: - [(SignalId, SignalInfo)] -- | The signals in the current architecture - -> [SignalMap] -- | The signals that are applied to function - -> SignalMap -- | the signals in which to store the function result + [CoreSyn.CoreExpr] -- | The argument that are applied to function + -> CoreSyn.CoreBndr -- | The binder in which to store the result -> Entity -- | The entity to map against. -> [AST.AssocElem] -- | The resulting port maps -mkAssocElems sigmap args res entity = +mkAssocElems args res entity = -- Create the actual AssocElems Maybe.catMaybes $ zipWith mkAssocElem ports sigs where -- Turn the ports and signals from a map into a flat list. This works, -- since the maps must have an identical form by definition. TODO: Check -- the similar form? - arg_ports = concat (map Foldable.toList (ent_args entity)) - res_ports = Foldable.toList (ent_res entity) - arg_sigs = (concat (map Foldable.toList args)) - res_sigs = Foldable.toList res + arg_ports = ent_args entity + res_port = ent_res entity -- Extract the id part from the (id, type) tuple - ports = (map (fmap fst) (arg_ports ++ res_ports)) + ports = map (Monad.liftM fst) (res_port : arg_ports) -- Translate signal numbers into names - sigs = (map (lookupSigName sigmap) (arg_sigs ++ res_sigs)) + sigs = (bndrToString res : map (bndrToString.varBndr) args) + +-- Turns a Var CoreExpr into the Id inside it. Will of course only work for +-- simple Var CoreExprs, not complexer ones. +varBndr :: CoreSyn.CoreExpr -> Var.Id +varBndr (CoreSyn.Var id) = id -- | Look up a signal in the signal name map lookupSigName :: [(SignalId, SignalInfo)] -> SignalId -> String @@ -261,34 +406,9 @@ lookupSigName sigs sig = name -- | Create an VHDL port -> signal association mkAssocElem :: Maybe AST.VHDLId -> String -> Maybe AST.AssocElem -mkAssocElem (Just port) signal = Just $ Just port AST.:=>: (AST.ADName (AST.NSimple (mkVHDLId signal))) +mkAssocElem (Just port) signal = Just $ Just port AST.:=>: (AST.ADName (AST.NSimple (mkVHDLExtId signal))) mkAssocElem Nothing _ = Nothing --- | Extracts the generated entity id from the given funcdata -getEntityId :: FuncData -> Maybe AST.VHDLId -getEntityId fdata = - case funcEntity fdata of - Nothing -> Nothing - Just e -> case ent_decl e of - Nothing -> Nothing - Just (AST.EntityDec id _) -> Just id - -getLibraryUnits :: - (HsFunction, FuncData) -- | A function from the session - -> Maybe (AST.LibraryUnit, AST.LibraryUnit) -- | The entity and architecture for the function - -getLibraryUnits (hsfunc, fdata) = - case funcEntity fdata of - Nothing -> Nothing - Just ent -> - case ent_decl ent of - Nothing -> Nothing - Just decl -> - case funcArch fdata of - Nothing -> Nothing - Just arch -> - Just (AST.LUEntity decl, AST.LUArch arch) - -- | The VHDL Bit type bit_ty :: AST.TypeMark bit_ty = AST.unsafeVHDLBasicId "Bit" @@ -302,31 +422,128 @@ std_logic_ty :: AST.TypeMark std_logic_ty = AST.unsafeVHDLBasicId "std_logic" -- Translate a Haskell type to a VHDL type -vhdl_ty :: Type.Type -> AST.TypeMark -vhdl_ty ty = Maybe.fromMaybe - (error $ "Unsupported Haskell type: " ++ (showSDoc $ ppr ty)) - (vhdl_ty_maybe ty) - --- Translate a Haskell type to a VHDL type -vhdl_ty_maybe :: Type.Type -> Maybe AST.TypeMark -vhdl_ty_maybe ty = - if Type.coreEqType ty TysWiredIn.boolTy - then - Just bool_ty - else - case Type.splitTyConApp_maybe ty of - Just (tycon, args) -> - let name = TyCon.tyConName tycon in - -- TODO: Do something more robust than string matching - case Name.getOccString name of - "Bit" -> Just std_logic_ty - otherwise -> Nothing - otherwise -> Nothing - --- Shortcut -mkVHDLId :: String -> AST.VHDLId -mkVHDLId s = - AST.unsafeVHDLBasicId s' +vhdl_ty :: Type.Type -> VHDLState AST.TypeMark +vhdl_ty ty = do + typemap <- getA vsTypes + let builtin_ty = do -- See if this is a tycon and lookup its name + (tycon, args) <- Type.splitTyConApp_maybe ty + let name = Name.getOccString (TyCon.tyConName tycon) + Map.lookup name builtin_types + -- If not a builtin type, try the custom types + let existing_ty = (fmap fst) $ Map.lookup (OrdType ty) typemap + case Monoid.getFirst $ Monoid.mconcat (map Monoid.First [builtin_ty, existing_ty]) of + -- Found a type, return it + Just t -> return t + -- No type yet, try to construct it + Nothing -> do + let new_ty = do + -- Use the Maybe Monad for failing when one of these fails + (tycon, args) <- Type.splitTyConApp_maybe ty + let name = Name.getOccString (TyCon.tyConName tycon) + case name of + "TFVec" -> Just $ mk_vector_ty (tfvec_len ty) ty + "SizedWord" -> Just $ mk_vector_ty (sized_word_len ty) ty + otherwise -> Nothing + -- Return new_ty when a new type was successfully created + Maybe.fromMaybe + (error $ "Unsupported Haskell type: " ++ (showSDoc $ ppr ty)) + new_ty + +-- | Create a VHDL vector type +mk_vector_ty :: + Int -- ^ The length of the vector + -> Type.Type -- ^ The Haskell type to create a VHDL type for + -> VHDLState AST.TypeMark -- The typemark created. + +mk_vector_ty len ty = do + -- Assume there is a single type argument + let ty_id = mkVHDLExtId $ "vector_" ++ (show len) + -- TODO: Use el_ty + let range = AST.IndexConstraint [AST.ToRange (AST.PrimLit "0") (AST.PrimLit $ show (len - 1))] + let ty_def = AST.TDA $ AST.ConsArrayDef range std_logic_ty + let ty_dec = AST.TypeDec ty_id ty_def + -- TODO: Check name uniqueness + --State.modify (Map.insert (OrdType ty) (ty_id, ty_dec)) + modA vsTypes (Map.insert (OrdType ty) (ty_id, ty_dec)) + modA vsTypeFuns (Map.insert (OrdType ty) (genUnconsVectorFuns std_logic_ty ty_id)) + return ty_id + + +builtin_types = + Map.fromList [ + ("Bit", std_logic_ty), + ("Bool", bool_ty) -- TysWiredIn.boolTy + ] + +-- Shortcut for +-- Can only contain alphanumerics and underscores. The supplied string must be +-- a valid basic id, otherwise an error value is returned. This function is +-- not meant to be passed identifiers from a source file, use mkVHDLExtId for +-- that. +mkVHDLBasicId :: String -> AST.VHDLId +mkVHDLBasicId s = + AST.unsafeVHDLBasicId $ (strip_multiscore . strip_leading . strip_invalid) s where -- Strip invalid characters. - s' = filter (`elem` ['A'..'Z'] ++ ['a'..'z'] ++ ['0'..'9'] ++ "_.") s + strip_invalid = filter (`elem` ['A'..'Z'] ++ ['a'..'z'] ++ ['0'..'9'] ++ "_.") + -- Strip leading numbers and underscores + strip_leading = dropWhile (`elem` ['0'..'9'] ++ "_") + -- Strip multiple adjacent underscores + strip_multiscore = concat . map (\cs -> + case cs of + ('_':_) -> "_" + _ -> cs + ) . List.group + +-- Shortcut for Extended VHDL Id's. These Id's can contain a lot more +-- different characters than basic ids, but can never be used to refer to +-- basic ids. +-- Use extended Ids for any values that are taken from the source file. +mkVHDLExtId :: String -> AST.VHDLId +mkVHDLExtId s = + AST.unsafeVHDLExtId $ strip_invalid s + where + -- Allowed characters, taken from ForSyde's mkVHDLExtId + allowed = ['A'..'Z'] ++ ['a'..'z'] ++ ['0'..'9'] ++ " \"#&\\'()*+,./:;<=>_|!$%@?[]^`{}~-" + strip_invalid = filter (`elem` allowed) + +-- Creates a VHDL Id from a binder +bndrToVHDLId :: + CoreSyn.CoreBndr + -> AST.VHDLId + +bndrToVHDLId = mkVHDLExtId . OccName.occNameString . Name.nameOccName . Var.varName + +-- Extracts the binder name as a String +bndrToString :: + CoreSyn.CoreBndr + -> String + +bndrToString = OccName.occNameString . Name.nameOccName . Var.varName + +-- | A consise representation of a (set of) ports on a builtin function +--type PortMap = HsValueMap (String, AST.TypeMark) +-- | A consise representation of a builtin function +data BuiltIn = BuiltIn String [(String, AST.TypeMark)] (String, AST.TypeMark) + +-- | Translate a list of concise representation of builtin functions to a +-- SignatureMap +mkBuiltins :: [BuiltIn] -> SignatureMap +mkBuiltins = Map.fromList . map (\(BuiltIn name args res) -> + (name, + Entity (VHDL.mkVHDLBasicId name) (map toVHDLSignalMapElement args) (toVHDLSignalMapElement res)) + ) + +builtin_hsfuncs = Map.keys builtin_funcs +builtin_funcs = mkBuiltins + [ + BuiltIn "hwxor" [("a", VHDL.bit_ty), ("b", VHDL.bit_ty)] ("o", VHDL.bit_ty), + BuiltIn "hwand" [("a", VHDL.bit_ty), ("b", VHDL.bit_ty)] ("o", VHDL.bit_ty), + BuiltIn "hwor" [("a", VHDL.bit_ty), ("b", VHDL.bit_ty)] ("o", VHDL.bit_ty), + BuiltIn "hwnot" [("a", VHDL.bit_ty)] ("o", VHDL.bit_ty) + ] + +-- | Map a port specification of a builtin function to a VHDL Signal to put in +-- a VHDLSignalMap +toVHDLSignalMapElement :: (String, AST.TypeMark) -> VHDLSignalMapElement +toVHDLSignalMapElement (name, ty) = Just (mkVHDLBasicId name, ty)