X-Git-Url: https://git.stderr.nl/gitweb?a=blobdiff_plain;f=Translator.hs;h=37ba81dccceced799119d95b046f48391c787feb;hb=72e072d592b1e5bf2efab36b132167e027d48173;hp=ef46be9f90f6d2e153e04a3459b654cc57d58070;hpb=1c8b70b006a44dfd4931ab726a0859b79029544d;p=matthijs%2Fmaster-project%2Fc%CE%BBash.git diff --git a/Translator.hs b/Translator.hs index ef46be9..37ba81d 100644 --- a/Translator.hs +++ b/Translator.hs @@ -26,6 +26,7 @@ import qualified Monad -- ForSyDe to get access to these modules. import qualified ForSyDe.Backend.VHDL.AST as AST import qualified ForSyDe.Backend.VHDL.Ppr +import qualified ForSyDe.Backend.VHDL.FileIO import qualified ForSyDe.Backend.Ppr -- This is needed for rendering the pretty printed VHDL import Text.PrettyPrint.HughesPJ (render) @@ -43,21 +44,24 @@ main = --load LoadAllTargets --core <- GHC.compileToCoreSimplified "Adders.hs" core <- GHC.compileToCoreSimplified "Adders.hs" - liftIO $ printBinds (cm_binds core) + --liftIO $ printBinds (cm_binds core) let binds = Maybe.mapMaybe (findBind (cm_binds core)) ["full_adder", "half_adder"] + liftIO $ printBinds binds -- Turn bind into VHDL - let vhdl = State.evalState (mkVHDL binds) (VHDLSession 0 builtin_funcs) - liftIO $ putStr $ concat $ map (render . ForSyDe.Backend.Ppr.ppr) vhdl + let vhdl = State.evalState (mkVHDL binds) (VHDLSession 0 []) + liftIO $ putStr $ render $ ForSyDe.Backend.Ppr.ppr vhdl + liftIO $ ForSyDe.Backend.VHDL.FileIO.writeDesignFile vhdl "../vhdl/vhdl/output.vhdl" return () where -- Turns the given bind into VHDL mkVHDL binds = do - -- Get the function signatures - funcs <- mapM mkHWFunction binds - -- Add them to the session - mapM (uncurry addFunc) funcs - -- Create architectures for them - mapM getArchitecture binds + -- Add the builtin functions + mapM (uncurry addFunc) builtin_funcs + -- Create entities and architectures for them + units <- mapM expandBind binds + return $ AST.DesignFile + [] + (concat units) printTarget (Target (TargetFile file (Just x)) obj Nothing) = print $ show file @@ -78,7 +82,7 @@ printBind (Rec binds) = do printBind' (b, expr) = do putStr $ getOccString b - --putStr $ showSDoc $ ppr expr + putStr $ showSDoc $ ppr expr putStr "\n" findBind :: [CoreBind] -> String -> Maybe CoreBind @@ -92,114 +96,30 @@ findBind binds lookfor = ) binds getPortMapEntry :: - SignalNameMap AST.VHDLId -- The port name to bind to - -> SignalNameMap AST.VHDLId + SignalNameMap -- The port name to bind to + -> SignalNameMap -- The signal or port to bind to it -> AST.AssocElem -- The resulting port map entry -- Accepts a port name and an argument to map to it. -- Returns the appropriate line for in the port map -getPortMapEntry (Signal portname) (Signal signame) = +getPortMapEntry (Single (portname, _)) (Single (signame, _)) = (Just portname) AST.:=>: (AST.ADName (AST.NSimple signame)) - -getInstantiations :: - [SignalNameMap AST.VHDLId] -- The arguments that need to be applied to the - -- expression. - -> SignalNameMap AST.VHDLId -- The output ports that the expression should generate. - -> [(CoreBndr, SignalNameMap AST.VHDLId)] - -- A list of bindings in effect - -> CoreSyn.CoreExpr -- The expression to generate an architecture for - -> VHDLState ([AST.SigDec], [AST.ConcSm]) - -- The resulting VHDL code - --- A lambda expression binds the first argument (a) to the binder b. -getInstantiations (a:as) outs binds (Lam b expr) = - getInstantiations as outs ((b, a):binds) expr - --- A case expression that checks a single variable and has a single --- alternative, can be used to take tuples apart -getInstantiations args outs binds (Case (Var v) b _ [res]) = - -- Split out the type of alternative constructor, the variables it binds - -- and the expression to evaluate with the variables bound. - let (altcon, bind_vars, expr) = res in - case altcon of - DataAlt datacon -> - if (DataCon.isTupleCon datacon) then - let - -- Lookup the scrutinee (which must be a variable bound to a tuple) in - -- the existing bindings list and get the portname map for each of - -- it's elements. - Tuple tuple_ports = Maybe.fromMaybe - (error $ "Case expression uses unknown scrutinee " ++ getOccString v) - (lookup v binds) - -- Merge our existing binds with the new binds. - binds' = (zip bind_vars tuple_ports) ++ binds - in - -- Evaluate the expression with the new binds list - getInstantiations args outs binds' expr - else - error "Data constructors other than tuples not supported" - otherwise -> - error "Case binders other than tuples not supported" - --- An application is an instantiation of a component -getInstantiations args outs binds app@(App expr arg) = do - let ((Var f), fargs) = collectArgs app - name = getOccString f - if isTupleConstructor f - then do - -- Get the signals we should bind our results to - let Tuple outports = outs - -- Split the tuple constructor arguments into types and actual values. - let (_, vals) = splitTupleConstructorArgs fargs - -- Bind each argument to each output signal - res <- sequence $ zipWith - (\outs' expr' -> getInstantiations args outs' binds expr') - outports vals - -- res is a list of pairs of lists, so split out the signals and - -- components into separate lists of lists - let (sigs, comps) = unzip res - -- And join all the signals and component instantiations together - return $ (concat sigs, concat comps) - else do - -- This is an normal function application, which maps to a component - -- instantiation. - -- Lookup the hwfunction to instantiate - HWFunction inports outport <- getHWFunc name - -- Generate a unique name for the application - appname <- uniqueName "app" - -- Expand each argument to a signal or port name, possibly generating - -- new signals and component instantiations - (sigs, comps, args) <- expandArgs binds fargs - -- Bind each of the input ports to the expanded signal or port - let inmaps = zipWith getPortMapEntry inports args - -- Bind each of the output ports to our output signals - let outmaps = mapOutputPorts outport outs - -- Build and return a component instantiation - let comp = AST.CompInsSm - (AST.unsafeVHDLBasicId appname) - (AST.IUEntity (AST.NSimple (AST.unsafeVHDLBasicId name))) - (AST.PMapAspect (inmaps ++ outmaps)) - return (sigs, (AST.CSISm comp) : comps) - -getInstantiations args outs binds expr = - error $ "Unsupported expression" ++ (showSDoc $ ppr $ expr) - expandExpr :: - [(CoreBndr, SignalNameMap AST.VHDLId)] + [(CoreBndr, SignalNameMap)] -- A list of bindings in effect -> CoreExpr -- The expression to expand -> VHDLState ( [AST.SigDec], -- Needed signal declarations [AST.ConcSm], -- Needed component instantations and -- signal assignments. - [SignalNameMap AST.VHDLId], -- The signal names corresponding to + [SignalNameMap], -- The signal names corresponding to -- the expression's arguments - SignalNameMap AST.VHDLId) -- The signal names corresponding to + SignalNameMap) -- The signal names corresponding to -- the expression's result. expandExpr binds lam@(Lam b expr) = do -- Generate a new signal to which we will expect this argument to be bound. - signal_name <- uniqueName ("arg-" ++ getOccString b) + signal_name <- uniqueName ("arg_" ++ getOccString b) -- Find the type of the binder let (arg_ty, _) = Type.splitFunTy (CoreUtils.exprType lam) -- Create signal names for the binder @@ -217,10 +137,10 @@ expandExpr binds lam@(Lam b expr) = do res_signal') expandExpr binds (Var id) = - return ([], [], [], Signal signal_id) + return ([], [], [], Single (signal_id, ty)) where -- Lookup the id in our binds map - Signal signal_id = Maybe.fromMaybe + Single (signal_id, ty) = Maybe.fromMaybe (error $ "Argument " ++ getOccString id ++ "is unknown") (lookup id binds) @@ -235,11 +155,17 @@ expandExpr binds l@(Let (NonRec b bexpr) expr) = do res_signals') expandExpr binds app@(App _ _) = do - let ((Var f), args) = collectArgs app - if isTupleConstructor f - then - expandBuildTupleExpr binds args - else + -- Is this a data constructor application? + case CoreUtils.exprIsConApp_maybe app of + -- Is this a tuple construction? + Just (dc, args) -> if DataCon.isTupleCon dc + then + expandBuildTupleExpr binds (dataConAppArgs dc args) + else + error "Data constructors other than tuples not supported" + otherise -> + -- Normal function application, should map to a component instantiation + let ((Var f), args) = collectArgs app in expandApplicationExpr binds (CoreUtils.exprType app) f args expandExpr binds expr@(Case (Var v) b _ alts) = @@ -255,17 +181,16 @@ expandExpr binds expr = -- Expands the construction of a tuple into VHDL expandBuildTupleExpr :: - [(CoreBndr, SignalNameMap AST.VHDLId)] + [(CoreBndr, SignalNameMap)] -- A list of bindings in effect -> [CoreExpr] -- A list of expressions to put in the tuple - -> VHDLState ( [AST.SigDec], [AST.ConcSm], [SignalNameMap AST.VHDLId], SignalNameMap AST.VHDLId) + -> VHDLState ( [AST.SigDec], [AST.ConcSm], [SignalNameMap], SignalNameMap) -- See expandExpr expandBuildTupleExpr binds args = do -- Split the tuple constructor arguments into types and actual values. - let (_, vals) = splitTupleConstructorArgs args -- Expand each of the values in the tuple (signals_declss, statementss, arg_signalss, res_signals) <- - (Monad.liftM List.unzip4) $ mapM (expandExpr binds) vals + (Monad.liftM List.unzip4) $ mapM (expandExpr binds) args if any (not . null) arg_signalss then error "Putting high order functions in tuples not supported" else @@ -279,12 +204,12 @@ expandBuildTupleExpr binds args = do -- and has a single alternative. This simple form currently allows only for -- unpacking tuple variables. expandSingleAltCaseExpr :: - [(CoreBndr, SignalNameMap AST.VHDLId)] + [(CoreBndr, SignalNameMap)] -- A list of bindings in effect -> Var.Var -- The scrutinee -> CoreBndr -- The binder to bind the scrutinee to -> CoreAlt -- The single alternative - -> VHDLState ( [AST.SigDec], [AST.ConcSm], [SignalNameMap AST.VHDLId], SignalNameMap AST.VHDLId) + -> VHDLState ( [AST.SigDec], [AST.ConcSm], [SignalNameMap], SignalNameMap) -- See expandExpr expandSingleAltCaseExpr binds v b alt@(DataAlt datacon, bind_vars, expr) = @@ -312,25 +237,25 @@ expandSingleAltCaseExpr _ _ _ alt = -- Expands the application of argument to a function into VHDL expandApplicationExpr :: - [(CoreBndr, SignalNameMap AST.VHDLId)] + [(CoreBndr, SignalNameMap)] -- A list of bindings in effect -> Type -- The result type of the function call -> Var.Var -- The function to call -> [CoreExpr] -- A list of argumetns to apply to the function - -> VHDLState ( [AST.SigDec], [AST.ConcSm], [SignalNameMap AST.VHDLId], SignalNameMap AST.VHDLId) + -> VHDLState ( [AST.SigDec], [AST.ConcSm], [SignalNameMap], SignalNameMap) -- See expandExpr expandApplicationExpr binds ty f args = do let name = getOccString f -- Generate a unique name for the application - appname <- uniqueName ("app-" ++ name) + appname <- uniqueName ("app_" ++ name) -- Lookup the hwfunction to instantiate - HWFunction inports outport <- getHWFunc name + HWFunction vhdl_id inports outport <- getHWFunc (appToHsFunction f args ty) -- Expand each of the args, so each of them is reduced to output signals (arg_signal_decls, arg_statements, arg_res_signals) <- expandArgs binds args -- Bind each of the input ports to the expanded arguments let inmaps = concat $ zipWith createAssocElems inports arg_res_signals -- Create signal names for our result - let res_signal = getPortNameMapForTy (appname ++ "-out") ty + let res_signal = getPortNameMapForTy (appname ++ "_out") ty -- Create the corresponding signal declarations let signal_decls = mkSignalsFromMap res_signal -- Bind each of the output ports to our output signals @@ -338,7 +263,7 @@ expandApplicationExpr binds ty f args = do -- Instantiate the component let component = AST.CSISm $ AST.CompInsSm (AST.unsafeVHDLBasicId appname) - (AST.IUEntity (AST.NSimple (AST.unsafeVHDLBasicId name))) + (AST.IUEntity (AST.NSimple vhdl_id)) (AST.PMapAspect (inmaps ++ outmaps)) -- Merge the generated declarations return ( @@ -350,11 +275,11 @@ expandApplicationExpr binds ty f args = do -- Creates a list of AssocElems (port map lines) that maps the given signals -- to the given ports. createAssocElems :: - SignalNameMap AST.VHDLId -- The port names to bind to - -> SignalNameMap AST.VHDLId -- The signals to bind to it + SignalNameMap -- The port names to bind to + -> SignalNameMap -- The signals to bind to it -> [AST.AssocElem] -- The resulting port map lines -createAssocElems (Signal port_id) (Signal signal_id) = +createAssocElems (Single (port_id, _)) (Single (signal_id, _)) = [(Just port_id) AST.:=>: (AST.ADName (AST.NSimple signal_id))] createAssocElems (Tuple ports) (Tuple signals) = @@ -374,20 +299,19 @@ mkSignalFromId id ty = -- Generates signal declarations for all the signals in the given map mkSignalsFromMap :: - SignalNameMap AST.VHDLId + SignalNameMap -> [AST.SigDec] -mkSignalsFromMap (Signal id) = - -- TODO: This uses the bit type hardcoded - [mkSignalFromId id vhdl_bit_ty] +mkSignalsFromMap (Single (id, ty)) = + [mkSignalFromId id ty] mkSignalsFromMap (Tuple signals) = concat $ map mkSignalsFromMap signals expandArgs :: - [(CoreBndr, SignalNameMap AST.VHDLId)] -- A list of bindings in effect + [(CoreBndr, SignalNameMap)] -- A list of bindings in effect -> [CoreExpr] -- The arguments to expand - -> VHDLState ([AST.SigDec], [AST.ConcSm], [SignalNameMap AST.VHDLId]) + -> VHDLState ([AST.SigDec], [AST.ConcSm], [SignalNameMap]) -- The resulting signal declarations, -- component instantiations and a -- VHDLName for each of the @@ -406,74 +330,95 @@ expandArgs binds (e:exprs) = do expandArgs _ [] = return ([], [], []) --- Is the given name a (binary) tuple constructor -isTupleConstructor :: Var.Var -> Bool -isTupleConstructor var = - Name.isWiredInName name - && Name.nameModule name == tuple_mod - && (Name.occNameString $ Name.nameOccName name) == "(,)" +-- Extract the arguments from a data constructor application (that is, the +-- normal args, leaving out the type args). +dataConAppArgs :: DataCon -> [CoreExpr] -> [CoreExpr] +dataConAppArgs dc args = + drop tycount args where - name = Var.varName var - mod = nameModule name - tuple_mod = Module.mkModule (Module.stringToPackageId "ghc-prim") (Module.mkModuleName "GHC.Tuple") - --- Split arguments into type arguments and value arguments This is probably --- not really sufficient (not sure if Types can actually occur as value --- arguments...) -splitTupleConstructorArgs :: [CoreExpr] -> ([CoreExpr], [CoreExpr]) -splitTupleConstructorArgs (e:es) = - case e of - Type t -> (e:tys, vals) - otherwise -> (tys, e:vals) - where - (tys, vals) = splitTupleConstructorArgs es - -splitTupleConstructorArgs [] = ([], []) + tycount = length $ DataCon.dataConAllTyVars dc mapOutputPorts :: - SignalNameMap AST.VHDLId -- The output portnames of the component - -> SignalNameMap AST.VHDLId -- The output portnames and/or signals to map these to + SignalNameMap -- The output portnames of the component + -> SignalNameMap -- The output portnames and/or signals to map these to -> [AST.AssocElem] -- The resulting output ports -- Map the output port of a component to the output port of the containing -- entity. -mapOutputPorts (Signal portname) (Signal signalname) = +mapOutputPorts (Single (portname, _)) (Single (signalname, _)) = [(Just portname) AST.:=>: (AST.ADName (AST.NSimple signalname))] -- Map matching output ports in the tuple mapOutputPorts (Tuple ports) (Tuple signals) = concat (zipWith mapOutputPorts ports signals) +expandBind :: + CoreBind -- The binder to expand into VHDL + -> VHDLState [AST.LibraryUnit] -- The resulting VHDL + +expandBind (Rec _) = error "Recursive binders not supported" + +expandBind bind@(NonRec var expr) = do + -- Create the function signature + hwfunc <- mkHWFunction bind + let ty = CoreUtils.exprType expr + let hsfunc = mkHsFunction var ty + -- Add it to the session + addFunc hsfunc hwfunc + arch <- getArchitecture hwfunc expr + let entity = getEntity hwfunc + return $ [ + AST.LUEntity entity, + AST.LUArch arch ] + getArchitecture :: - CoreBind -- The binder to expand into an architecture + HWFunction -- The function to generate an architecture for + -> CoreExpr -- The expression that is bound to the function -> VHDLState AST.ArchBody -- The resulting architecture -getArchitecture (Rec _) = error "Recursive binders not supported" - -getArchitecture (NonRec var expr) = do - let name = (getOccString var) - HWFunction inports outport <- getHWFunc name - sess <- State.get +getArchitecture hwfunc expr = do + -- Unpack our hwfunc + let HWFunction vhdl_id inports outport = hwfunc + -- Expand the expression into an architecture body (signal_decls, statements, arg_signals, res_signal) <- expandExpr [] expr let inport_assigns = concat $ zipWith createSignalAssignments arg_signals inports let outport_assigns = createSignalAssignments outport res_signal return $ AST.ArchBody (AST.unsafeVHDLBasicId "structural") - -- Use unsafe for now, to prevent pulling in ForSyDe error handling - (AST.NSimple (AST.unsafeVHDLBasicId name)) + (AST.NSimple vhdl_id) (map AST.BDISD signal_decls) (inport_assigns ++ outport_assigns ++ statements) +-- Generate a VHDL entity declaration for the given function +getEntity :: HWFunction -> AST.EntityDec +getEntity (HWFunction vhdl_id inports outport) = + AST.EntityDec vhdl_id ports + where + ports = + (concat $ map (mkIfaceSigDecs AST.In) inports) + ++ mkIfaceSigDecs AST.Out outport + +mkIfaceSigDecs :: + AST.Mode -- The port's mode (In or Out) + -> SignalNameMap -- The ports to generate a map for + -> [AST.IfaceSigDec] -- The resulting ports + +mkIfaceSigDecs mode (Single (port_id, ty)) = + [AST.IfaceSigDec port_id mode ty] + +mkIfaceSigDecs mode (Tuple ports) = + concat $ map (mkIfaceSigDecs mode) ports + -- Create concurrent assignments of one map of signals to another. The maps -- should have a similar form. createSignalAssignments :: - SignalNameMap AST.VHDLId -- The signals to assign to - -> SignalNameMap AST.VHDLId -- The signals to assign + SignalNameMap -- The signals to assign to + -> SignalNameMap -- The signals to assign -> [AST.ConcSm] -- The resulting assignments -- A simple assignment of one signal to another (greatly complicated because -- signal assignments can be conditional with multiple conditions in VHDL). -createSignalAssignments (Signal dst) (Signal src) = +createSignalAssignments (Single (dst, _)) (Single (src, _)) = [AST.CSSASm assign] where src_name = AST.NSimple src @@ -488,32 +433,60 @@ createSignalAssignments (Tuple dsts) (Tuple srcs) = createSignalAssignments dst src = error $ "Non matching source and destination: " ++ show dst ++ "\nand\n" ++ show src -data SignalNameMap t = - Tuple [SignalNameMap t] - | Signal t - deriving (Show) +type SignalNameMap = HsValueMap (AST.VHDLId, AST.TypeMark) + +-- | A datatype that maps each of the single values in a haskell structure to +-- a mapto. The map has the same structure as the haskell type mapped, ie +-- nested tuples etc. +data HsValueMap mapto = + Tuple [HsValueMap mapto] + | Single mapto + deriving (Show, Eq) + +-- | Creates a HsValueMap with the same structure as the given type, using the +-- given function for mapping the single types. +mkHsValueMap :: + (Type -> HsValueMap mapto) -- ^ A function to map single value Types + -- (basically anything but tuples) to a + -- HsValueMap (not limited to the Single + -- constructor) + -> Type -- ^ The type to map to a HsValueMap + -> HsValueMap mapto -- ^ The resulting map + +mkHsValueMap f ty = + case Type.splitTyConApp_maybe ty of + Just (tycon, args) -> + if (TyCon.isTupleTyCon tycon) + then + -- Handle tuple construction especially + Tuple (map (mkHsValueMap f) args) + else + -- And let f handle the rest + f ty + -- And let f handle the rest + Nothing -> f ty -- Generate a port name map (or multiple for tuple types) in the given direction for -- each type given. -getPortNameMapForTys :: String -> Int -> [Type] -> [SignalNameMap AST.VHDLId] +getPortNameMapForTys :: String -> Int -> [Type] -> [SignalNameMap] getPortNameMapForTys prefix num [] = [] getPortNameMapForTys prefix num (t:ts) = (getPortNameMapForTy (prefix ++ show num) t) : getPortNameMapForTys prefix (num + 1) ts -getPortNameMapForTy :: String -> Type -> SignalNameMap AST.VHDLId +getPortNameMapForTy :: String -> Type -> SignalNameMap getPortNameMapForTy name ty = if (TyCon.isTupleTyCon tycon) then -- Expand tuples we find Tuple (getPortNameMapForTys name 0 args) else -- Assume it's a type constructor application, ie simple data type - -- TODO: Add type? - Signal (AST.unsafeVHDLBasicId name) + Single ((AST.unsafeVHDLBasicId name), (vhdl_ty ty)) where (tycon, args) = Type.splitTyConApp ty data HWFunction = HWFunction { -- A function that is available in hardware - inPorts :: [SignalNameMap AST.VHDLId], - outPort :: SignalNameMap AST.VHDLId + vhdlId :: AST.VHDLId, + inPorts :: [SignalNameMap], + outPort :: SignalNameMap --entity :: AST.EntityDec } deriving (Show) @@ -521,12 +494,12 @@ data HWFunction = HWFunction { -- A function that is available in hardware -- output ports. mkHWFunction :: CoreBind -- The core binder to generate the interface for - -> VHDLState (String, HWFunction) -- The name of the function and its interface + -> VHDLState HWFunction -- The function interface mkHWFunction (NonRec var expr) = - return (name, HWFunction inports outport) + return $ HWFunction (mkVHDLId name) inports outport where - name = (getOccString var) + name = getOccString var ty = CoreUtils.exprType expr (fargs, res) = Type.splitFunTys ty args = if length fargs == 1 then fargs else (init fargs) @@ -540,27 +513,74 @@ mkHWFunction (NonRec var expr) = mkHWFunction (Rec _) = error "Recursive binders not supported" +-- | How is a given (single) value in a function's type (ie, argument or +-- return value) used? +data HsValueUse = + Port -- ^ Use it as a port (input or output) + deriving (Show, Eq) + +-- | This type describes a particular use of a Haskell function and is used to +-- look up an appropriate hardware description. +data HsFunction = HsFunction { + hsName :: String, -- ^ What was the name of the original Haskell function? + hsArgs :: [HsValueMap HsValueUse], -- ^ How are the arguments used? + hsRes :: HsValueMap HsValueUse -- ^ How is the result value used? +} deriving (Show, Eq) + +-- | Translate a function application to a HsFunction. i.e., which function +-- do you need to translate this function application. +appToHsFunction :: + Var.Var -- ^ The function to call + -> [CoreExpr] -- ^ The function arguments + -> Type -- ^ The return type + -> HsFunction -- ^ The needed HsFunction + +appToHsFunction f args ty = + HsFunction hsname hsargs hsres + where + mkPort = \x -> Single Port + hsargs = map (mkHsValueMap mkPort . CoreUtils.exprType) args + hsres = mkHsValueMap mkPort ty + hsname = getOccString f + +-- | Translate a top level function declaration to a HsFunction. i.e., which +-- interface will be provided by this function. This function essentially +-- defines the "calling convention" for hardware models. +mkHsFunction :: + Var.Var -- ^ The function defined + -> Type -- ^ The function type (including arguments!) + -> HsFunction -- ^ The resulting HsFunction + +mkHsFunction f ty = + HsFunction hsname hsargs hsres + where + (arg_tys, res_ty) = Type.splitFunTys ty + mkPort = \x -> Single Port + hsargs = map (mkHsValueMap mkPort) arg_tys + hsres = mkHsValueMap mkPort res_ty + hsname = getOccString f + data VHDLSession = VHDLSession { - nameCount :: Int, -- A counter that can be used to generate unique names - funcs :: [(String, HWFunction)] -- All functions available, indexed by name + nameCount :: Int, -- A counter that can be used to generate unique names + funcs :: [(HsFunction, HWFunction)] -- All functions available } deriving (Show) type VHDLState = State.State VHDLSession -- Add the function to the session -addFunc :: String -> HWFunction -> VHDLState () -addFunc name f = do +addFunc :: HsFunction -> HWFunction -> VHDLState () +addFunc hsfunc hwfunc = do fs <- State.gets funcs -- Get the funcs element from the session - State.modify (\x -> x {funcs = (name, f) : fs }) -- Prepend name and f + State.modify (\x -> x {funcs = (hsfunc, hwfunc) : fs }) -- Prepend name and f -- Lookup the function with the given name in the current session. Errors if -- it was not found. -getHWFunc :: String -> VHDLState HWFunction -getHWFunc name = do +getHWFunc :: HsFunction -> VHDLState HWFunction +getHWFunc hsfunc = do fs <- State.gets funcs -- Get the funcs element from the session return $ Maybe.fromMaybe - (error $ "Function " ++ name ++ "is unknown? This should not happen!") - (lookup name fs) + (error $ "Function " ++ (hsName hsfunc) ++ "is unknown? This should not happen!") + (lookup hsfunc fs) -- Makes the given name unique by appending a unique number. -- This does not do any checking against existing names, so it only guarantees @@ -569,7 +589,7 @@ uniqueName :: String -> VHDLState String uniqueName name = do count <- State.gets nameCount -- Get the funcs element from the session State.modify (\s -> s {nameCount = count + 1}) - return $ name ++ "-" ++ (show count) + return $ name ++ "_" ++ (show count) -- Shortcut mkVHDLId :: String -> AST.VHDLId @@ -577,13 +597,31 @@ mkVHDLId = AST.unsafeVHDLBasicId builtin_funcs = [ - ("hwxor", HWFunction [Signal $ mkVHDLId "a", Signal $ mkVHDLId "b"] (Signal $ mkVHDLId "o")), - ("hwand", HWFunction [Signal $ mkVHDLId "a", Signal $ mkVHDLId "b"] (Signal $ mkVHDLId "o")), - ("hwor", HWFunction [Signal $ mkVHDLId "a", Signal $ mkVHDLId "b"] (Signal $ mkVHDLId "o")), - ("hwnot", HWFunction [Signal $ mkVHDLId "i"] (Signal $ mkVHDLId "o")) + (HsFunction "hwxor" [(Single Port), (Single Port)] (Single Port), HWFunction (mkVHDLId "hwxor") [Single (mkVHDLId "a", vhdl_bit_ty), Single (mkVHDLId "b", vhdl_bit_ty)] (Single (mkVHDLId "o", vhdl_bit_ty))), + (HsFunction "hwand" [(Single Port), (Single Port)] (Single Port), HWFunction (mkVHDLId "hwand") [Single (mkVHDLId "a", vhdl_bit_ty), Single (mkVHDLId "b", vhdl_bit_ty)] (Single (mkVHDLId "o", vhdl_bit_ty))), + (HsFunction "hwor" [(Single Port), (Single Port)] (Single Port), HWFunction (mkVHDLId "hwor") [Single (mkVHDLId "a", vhdl_bit_ty), Single (mkVHDLId "b", vhdl_bit_ty)] (Single (mkVHDLId "o", vhdl_bit_ty))), + (HsFunction "hwnot" [(Single Port)] (Single Port), HWFunction (mkVHDLId "hwnot") [Single (mkVHDLId "i", vhdl_bit_ty)] (Single (mkVHDLId "o", vhdl_bit_ty))) ] vhdl_bit_ty :: AST.TypeMark vhdl_bit_ty = AST.unsafeVHDLBasicId "Bit" +-- Translate a Haskell type to a VHDL type +vhdl_ty :: Type -> AST.TypeMark +vhdl_ty ty = Maybe.fromMaybe + (error $ "Unsupported Haskell type: " ++ (showSDoc $ ppr ty)) + (vhdl_ty_maybe ty) + +-- Translate a Haskell type to a VHDL type +vhdl_ty_maybe :: Type -> Maybe AST.TypeMark +vhdl_ty_maybe ty = + case Type.splitTyConApp_maybe ty of + Just (tycon, args) -> + let name = TyCon.tyConName tycon in + -- TODO: Do something more robust than string matching + case getOccString name of + "Bit" -> Just vhdl_bit_ty + otherwise -> Nothing + otherwise -> Nothing + -- vim: set ts=8 sw=2 sts=2 expandtab: