X-Git-Url: https://git.stderr.nl/gitweb?a=blobdiff_plain;f=Translator.hs;h=260b1cdf5061a5e57b0553ed1ffebd0e1c7e9217;hb=b8c1e8554ba8aee73bc9d9a54bb3cb32f7930957;hp=ad36bbcb950a28f292b7dfb9fde20f87013d7712;hpb=3f4773d25a4c44a0e4c9503806562a6741da3508;p=matthijs%2Fmaster-project%2Fc%CE%BBash.git diff --git a/Translator.hs b/Translator.hs index ad36bbc..260b1cd 100644 --- a/Translator.hs +++ b/Translator.hs @@ -26,7 +26,7 @@ import NameEnv ( lookupNameEnv ) import qualified HscTypes import HscTypes ( cm_binds, cm_types ) import MonadUtils ( liftIO ) -import Outputable ( showSDoc, ppr ) +import Outputable ( showSDoc, ppr, showSDocDebug ) import GHC.Paths ( libdir ) import DynFlags ( defaultDynFlags ) import qualified UniqSupply @@ -37,10 +37,9 @@ import qualified Monad -- The following modules come from the ForSyDe project. They are really -- internal modules, so ForSyDe.cabal has to be modified prior to installing -- ForSyDe to get access to these modules. -import qualified ForSyDe.Backend.VHDL.AST as AST -import qualified ForSyDe.Backend.VHDL.Ppr -import qualified ForSyDe.Backend.VHDL.FileIO -import qualified ForSyDe.Backend.Ppr +import qualified Language.VHDL.AST as AST +import qualified Language.VHDL.FileIO +import qualified Language.VHDL.Ppr as Ppr -- This is needed for rendering the pretty printed VHDL import Text.PrettyPrint.HughesPJ (render) @@ -48,27 +47,45 @@ import TranslatorTypes import HsValueMap import Pretty import Normalize -import Flatten -import FlattenTypes +-- import Flatten +-- import FlattenTypes import VHDLTypes import qualified VHDL makeVHDL :: String -> String -> Bool -> IO () makeVHDL filename name stateful = do -- Load the module - core <- loadModule filename + (core, env) <- loadModule filename -- Translate to VHDL - vhdl <- moduleToVHDL core [(name, stateful)] + vhdl <- moduleToVHDL env core [(name, stateful)] -- Write VHDL to file let dir = "./vhdl/" ++ name ++ "/" prepareDir dir mapM (writeVHDL dir) vhdl return () +listBindings :: String -> IO [()] +listBindings filename = do + (core, env) <- loadModule filename + let binds = CoreSyn.flattenBinds $ cm_binds core + mapM (listBinding) binds + +listBinding :: (CoreBndr, CoreExpr) -> IO () +listBinding (b, e) = do + putStr "\nBinder: " + putStr $ show b + putStr "\nExpression: \n" + putStr $ prettyShow e + putStr "\n\n" + putStr $ showSDoc $ ppr e + putStr "\n\n" + putStr $ showSDoc $ ppr $ CoreUtils.exprType e + putStr "\n\n" + -- | Show the core structure of the given binds in the given file. listBind :: String -> String -> IO () listBind filename name = do - core <- loadModule filename + (core, env) <- loadModule filename let [(b, expr)] = findBinds core [name] putStr "\n" putStr $ prettyShow expr @@ -81,8 +98,8 @@ listBind filename name = do -- | Translate the binds with the given names from the given core module to -- VHDL. The Bool in the tuple makes the function stateful (True) or -- stateless (False). -moduleToVHDL :: HscTypes.CoreModule -> [(String, Bool)] -> IO [(AST.VHDLId, AST.DesignFile)] -moduleToVHDL core list = do +moduleToVHDL :: HscTypes.HscEnv -> HscTypes.CoreModule -> [(String, Bool)] -> IO [(AST.VHDLId, AST.DesignFile)] +moduleToVHDL env core list = do let (names, statefuls) = unzip list let binds = map fst $ findBinds core names -- Generate a UniqSupply @@ -93,9 +110,9 @@ moduleToVHDL core list = do uniqSupply <- UniqSupply.mkSplitUniqSupply 'z' -- Turn bind into VHDL let all_bindings = (CoreSyn.flattenBinds $ cm_binds core) - let normalized_bindings = normalizeModule uniqSupply all_bindings binds statefuls - let vhdl = VHDL.createDesignFiles normalized_bindings - mapM (putStr . render . ForSyDe.Backend.Ppr.ppr . snd) vhdl + let (normalized_bindings, typestate) = normalizeModule env uniqSupply all_bindings binds statefuls + let vhdl = VHDL.createDesignFiles typestate normalized_bindings + mapM (putStr . render . Ppr.ppr . snd) vhdl --putStr $ "\n\nFinal session:\n" ++ prettyShow sess ++ "\n\n" return vhdl where @@ -122,10 +139,10 @@ writeVHDL dir (name, vhdl) = do -- Find the filename let fname = dir ++ (AST.fromVHDLId name) ++ ".vhdl" -- Write the file - ForSyDe.Backend.VHDL.FileIO.writeDesignFile vhdl fname + Language.VHDL.FileIO.writeDesignFile vhdl fname -- | Loads the given file and turns it into a core module. -loadModule :: String -> IO HscTypes.CoreModule +loadModule :: String -> IO (HscTypes.CoreModule, HscTypes.HscEnv) loadModule filename = defaultErrorHandler defaultDynFlags $ do runGhc (Just libdir) $ do @@ -138,7 +155,8 @@ loadModule filename = --load LoadAllTargets --core <- GHC.compileToCoreSimplified "Adders.hs" core <- GHC.compileToCoreModule filename - return core + env <- GHC.getSession + return (core, env) -- | Extracts the named binds from the given module. findBinds :: HscTypes.CoreModule -> [String] -> [(CoreBndr, CoreExpr)] @@ -155,200 +173,200 @@ findBind binds lookfor = -- | Flattens the given bind into the given signature and adds it to the -- session. Then (recursively) finds any functions it uses and does the same -- with them. -flattenBind :: - HsFunction -- The signature to flatten into - -> (CoreBndr, CoreExpr) -- The bind to flatten - -> TranslatorState () - -flattenBind hsfunc bind@(var, expr) = do - -- Flatten the function - let flatfunc = flattenFunction hsfunc bind - -- Propagate state variables - let flatfunc' = propagateState hsfunc flatfunc - -- Store the flat function in the session - modA tsFlatFuncs (Map.insert hsfunc flatfunc') - -- Flatten any functions used - let used_hsfuncs = Maybe.mapMaybe usedHsFunc (flat_defs flatfunc') - mapM_ resolvFunc used_hsfuncs +-- flattenBind :: +-- HsFunction -- The signature to flatten into +-- -> (CoreBndr, CoreExpr) -- The bind to flatten +-- -> TranslatorState () +-- +-- flattenBind hsfunc bind@(var, expr) = do +-- -- Flatten the function +-- let flatfunc = flattenFunction hsfunc bind +-- -- Propagate state variables +-- let flatfunc' = propagateState hsfunc flatfunc +-- -- Store the flat function in the session +-- modA tsFlatFuncs (Map.insert hsfunc flatfunc') +-- -- Flatten any functions used +-- let used_hsfuncs = Maybe.mapMaybe usedHsFunc (flat_defs flatfunc') +-- mapM_ resolvFunc used_hsfuncs -- | Decide which incoming state variables will become state in the -- given function, and which will be propagate to other applied -- functions. -propagateState :: - HsFunction - -> FlatFunction - -> FlatFunction - -propagateState hsfunc flatfunc = - flatfunc {flat_defs = apps', flat_sigs = sigs'} - where - (olds, news) = unzip $ getStateSignals hsfunc flatfunc - states' = zip olds news - -- Find all signals used by all sigdefs - uses = concatMap sigDefUses (flat_defs flatfunc) - -- Find all signals that are used more than once (is there a - -- prettier way to do this?) - multiple_uses = uses List.\\ (List.nub uses) - -- Find the states whose "old state" signal is used only once - single_use_states = filter ((`notElem` multiple_uses) . fst) states' - -- See if these single use states can be propagated - (substate_sigss, apps') = unzip $ map (propagateState' single_use_states) (flat_defs flatfunc) - substate_sigs = concat substate_sigss - -- Mark any propagated state signals as SigSubState - sigs' = map - (\(id, info) -> (id, if id `elem` substate_sigs then info {sigUse = SigSubState} else info)) - (flat_sigs flatfunc) +-- propagateState :: +-- HsFunction +-- -> FlatFunction +-- -> FlatFunction +-- +-- propagateState hsfunc flatfunc = +-- flatfunc {flat_defs = apps', flat_sigs = sigs'} +-- where +-- (olds, news) = unzip $ getStateSignals hsfunc flatfunc +-- states' = zip olds news +-- -- Find all signals used by all sigdefs +-- uses = concatMap sigDefUses (flat_defs flatfunc) +-- -- Find all signals that are used more than once (is there a +-- -- prettier way to do this?) +-- multiple_uses = uses List.\\ (List.nub uses) +-- -- Find the states whose "old state" signal is used only once +-- single_use_states = filter ((`notElem` multiple_uses) . fst) states' +-- -- See if these single use states can be propagated +-- (substate_sigss, apps') = unzip $ map (propagateState' single_use_states) (flat_defs flatfunc) +-- substate_sigs = concat substate_sigss +-- -- Mark any propagated state signals as SigSubState +-- sigs' = map +-- (\(id, info) -> (id, if id `elem` substate_sigs then info {sigUse = SigSubState} else info)) +-- (flat_sigs flatfunc) -- | Propagate the state into a single function application. -propagateState' :: - [(SignalId, SignalId)] - -- ^ TODO - -> SigDef -- ^ The SigDef to process. - -> ([SignalId], SigDef) - -- ^ Any signal ids that should become substates, - -- and the resulting application. - -propagateState' states def = - if (is_FApp def) then - (our_old ++ our_new, def {appFunc = hsfunc'}) - else - ([], def) - where - hsfunc = appFunc def - args = appArgs def - res = appRes def - our_states = filter our_state states - -- A state signal belongs in this function if the old state is - -- passed in, and the new state returned - our_state (old, new) = - any (old `Foldable.elem`) args - && new `Foldable.elem` res - (our_old, our_new) = unzip our_states - -- Mark the result - zipped_res = zipValueMaps res (hsFuncRes hsfunc) - res' = fmap (mark_state (zip our_new [0..])) zipped_res - -- Mark the args - zipped_args = zipWith zipValueMaps args (hsFuncArgs hsfunc) - args' = map (fmap (mark_state (zip our_old [0..]))) zipped_args - hsfunc' = hsfunc {hsFuncArgs = args', hsFuncRes = res'} - - mark_state :: [(SignalId, StateId)] -> (SignalId, HsValueUse) -> HsValueUse - mark_state states (id, use) = - case lookup id states of - Nothing -> use - Just state_id -> State state_id +-- propagateState' :: +-- [(SignalId, SignalId)] +-- -- ^ TODO +-- -> SigDef -- ^ The SigDef to process. +-- -> ([SignalId], SigDef) +-- -- ^ Any signal ids that should become substates, +-- -- and the resulting application. +-- +-- propagateState' states def = +-- if (is_FApp def) then +-- (our_old ++ our_new, def {appFunc = hsfunc'}) +-- else +-- ([], def) +-- where +-- hsfunc = appFunc def +-- args = appArgs def +-- res = appRes def +-- our_states = filter our_state states +-- -- A state signal belongs in this function if the old state is +-- -- passed in, and the new state returned +-- our_state (old, new) = +-- any (old `Foldable.elem`) args +-- && new `Foldable.elem` res +-- (our_old, our_new) = unzip our_states +-- -- Mark the result +-- zipped_res = zipValueMaps res (hsFuncRes hsfunc) +-- res' = fmap (mark_state (zip our_new [0..])) zipped_res +-- -- Mark the args +-- zipped_args = zipWith zipValueMaps args (hsFuncArgs hsfunc) +-- args' = map (fmap (mark_state (zip our_old [0..]))) zipped_args +-- hsfunc' = hsfunc {hsFuncArgs = args', hsFuncRes = res'} +-- +-- mark_state :: [(SignalId, StateId)] -> (SignalId, HsValueUse) -> HsValueUse +-- mark_state states (id, use) = +-- case lookup id states of +-- Nothing -> use +-- Just state_id -> State state_id -- | Returns pairs of signals that should be mapped to state in this function. -getStateSignals :: - HsFunction -- | The function to look at - -> FlatFunction -- | The function to look at - -> [(SignalId, SignalId)] - -- | TODO The state signals. The first is the state number, the second the - -- signal to assign the current state to, the last is the signal - -- that holds the new state. - -getStateSignals hsfunc flatfunc = - [(old_id, new_id) - | (old_num, old_id) <- args - , (new_num, new_id) <- res - , old_num == new_num] - where - sigs = flat_sigs flatfunc - -- Translate args and res to lists of (statenum, sigid) - args = concat $ zipWith stateList (hsFuncArgs hsfunc) (flat_args flatfunc) - res = stateList (hsFuncRes hsfunc) (flat_res flatfunc) +-- getStateSignals :: +-- HsFunction -- | The function to look at +-- -> FlatFunction -- | The function to look at +-- -> [(SignalId, SignalId)] +-- -- | TODO The state signals. The first is the state number, the second the +-- -- signal to assign the current state to, the last is the signal +-- -- that holds the new state. +-- +-- getStateSignals hsfunc flatfunc = +-- [(old_id, new_id) +-- | (old_num, old_id) <- args +-- , (new_num, new_id) <- res +-- , old_num == new_num] +-- where +-- sigs = flat_sigs flatfunc +-- -- Translate args and res to lists of (statenum, sigid) +-- args = concat $ zipWith stateList (hsFuncArgs hsfunc) (flat_args flatfunc) +-- res = stateList (hsFuncRes hsfunc) (flat_res flatfunc) -- | Find the given function, flatten it and add it to the session. Then -- (recursively) do the same for any functions used. -resolvFunc :: - HsFunction -- | The function to look for - -> TranslatorState () - -resolvFunc hsfunc = do - flatfuncmap <- getA tsFlatFuncs - -- Don't do anything if there is already a flat function for this hsfunc or - -- when it is a builtin function. - Monad.unless (Map.member hsfunc flatfuncmap) $ do - -- Not working with new builtins -- Monad.unless (elem hsfunc VHDL.builtin_hsfuncs) $ do - -- New function, resolve it - core <- getA tsCoreModule - -- Find the named function - let name = (hsFuncName hsfunc) - let bind = findBind (CoreSyn.flattenBinds $ cm_binds core) name - case bind of - Nothing -> error $ "Couldn't find function " ++ name ++ " in current module." - Just b -> flattenBind hsfunc b +-- resolvFunc :: +-- HsFunction -- | The function to look for +-- -> TranslatorState () +-- +-- resolvFunc hsfunc = do +-- flatfuncmap <- getA tsFlatFuncs +-- -- Don't do anything if there is already a flat function for this hsfunc or +-- -- when it is a builtin function. +-- Monad.unless (Map.member hsfunc flatfuncmap) $ do +-- -- Not working with new builtins -- Monad.unless (elem hsfunc VHDL.builtin_hsfuncs) $ do +-- -- New function, resolve it +-- core <- getA tsCoreModule +-- -- Find the named function +-- let name = (hsFuncName hsfunc) +-- let bind = findBind (CoreSyn.flattenBinds $ cm_binds core) name +-- case bind of +-- Nothing -> error $ "Couldn't find function " ++ name ++ " in current module." +-- Just b -> flattenBind hsfunc b -- | Translate a top level function declaration to a HsFunction. i.e., which -- interface will be provided by this function. This function essentially -- defines the "calling convention" for hardware models. -mkHsFunction :: - Var.Var -- ^ The function defined - -> Type -- ^ The function type (including arguments!) - -> Bool -- ^ Is this a stateful function? - -> HsFunction -- ^ The resulting HsFunction - -mkHsFunction f ty stateful= - HsFunction hsname hsargs hsres - where - hsname = getOccString f - (arg_tys, res_ty) = Type.splitFunTys ty - (hsargs, hsres) = - if stateful - then - let - -- The last argument must be state - state_ty = last arg_tys - state = useAsState (mkHsValueMap state_ty) - -- All but the last argument are inports - inports = map (useAsPort . mkHsValueMap)(init arg_tys) - hsargs = inports ++ [state] - hsres = case splitTupleType res_ty of - -- Result type must be a two tuple (state, ports) - Just [outstate_ty, outport_ty] -> if Type.coreEqType state_ty outstate_ty - then - Tuple [state, useAsPort (mkHsValueMap outport_ty)] - else - error $ "Input state type of function " ++ hsname ++ ": " ++ (showSDoc $ ppr state_ty) ++ " does not match output state type: " ++ (showSDoc $ ppr outstate_ty) - otherwise -> error $ "Return type of top-level function " ++ hsname ++ " must be a two-tuple containing a state and output ports." - in - (hsargs, hsres) - else - -- Just use everything as a port - (map (useAsPort . mkHsValueMap) arg_tys, useAsPort $ mkHsValueMap res_ty) +-- mkHsFunction :: +-- Var.Var -- ^ The function defined +-- -> Type -- ^ The function type (including arguments!) +-- -> Bool -- ^ Is this a stateful function? +-- -> HsFunction -- ^ The resulting HsFunction +-- +-- mkHsFunction f ty stateful= +-- HsFunction hsname hsargs hsres +-- where +-- hsname = getOccString f +-- (arg_tys, res_ty) = Type.splitFunTys ty +-- (hsargs, hsres) = +-- if stateful +-- then +-- let +-- -- The last argument must be state +-- state_ty = last arg_tys +-- state = useAsState (mkHsValueMap state_ty) +-- -- All but the last argument are inports +-- inports = map (useAsPort . mkHsValueMap)(init arg_tys) +-- hsargs = inports ++ [state] +-- hsres = case splitTupleType res_ty of +-- -- Result type must be a two tuple (state, ports) +-- Just [outstate_ty, outport_ty] -> if Type.coreEqType state_ty outstate_ty +-- then +-- Tuple [state, useAsPort (mkHsValueMap outport_ty)] +-- else +-- error $ "Input state type of function " ++ hsname ++ ": " ++ (showSDoc $ ppr state_ty) ++ " does not match output state type: " ++ (showSDoc $ ppr outstate_ty) +-- otherwise -> error $ "Return type of top-level function " ++ hsname ++ " must be a two-tuple containing a state and output ports." +-- in +-- (hsargs, hsres) +-- else +-- -- Just use everything as a port +-- (map (useAsPort . mkHsValueMap) arg_tys, useAsPort $ mkHsValueMap res_ty) -- | Adds signal names to the given FlatFunction -nameFlatFunction :: - FlatFunction - -> FlatFunction - -nameFlatFunction flatfunc = - -- Name the signals - let - s = flat_sigs flatfunc - s' = map nameSignal s in - flatfunc { flat_sigs = s' } - where - nameSignal :: (SignalId, SignalInfo) -> (SignalId, SignalInfo) - nameSignal (id, info) = - let hints = nameHints info in - let parts = ("sig" : hints) ++ [show id] in - let name = concat $ List.intersperse "_" parts in - (id, info {sigName = Just name}) - --- | Splits a tuple type into a list of element types, or Nothing if the type --- is not a tuple type. -splitTupleType :: - Type -- ^ The type to split - -> Maybe [Type] -- ^ The tuples element types - -splitTupleType ty = - case Type.splitTyConApp_maybe ty of - Just (tycon, args) -> if TyCon.isTupleTyCon tycon - then - Just args - else - Nothing - Nothing -> Nothing +-- nameFlatFunction :: +-- FlatFunction +-- -> FlatFunction +-- +-- nameFlatFunction flatfunc = +-- -- Name the signals +-- let +-- s = flat_sigs flatfunc +-- s' = map nameSignal s in +-- flatfunc { flat_sigs = s' } +-- where +-- nameSignal :: (SignalId, SignalInfo) -> (SignalId, SignalInfo) +-- nameSignal (id, info) = +-- let hints = nameHints info in +-- let parts = ("sig" : hints) ++ [show id] in +-- let name = concat $ List.intersperse "_" parts in +-- (id, info {sigName = Just name}) +-- +-- -- | Splits a tuple type into a list of element types, or Nothing if the type +-- -- is not a tuple type. +-- splitTupleType :: +-- Type -- ^ The type to split +-- -> Maybe [Type] -- ^ The tuples element types +-- +-- splitTupleType ty = +-- case Type.splitTyConApp_maybe ty of +-- Just (tycon, args) -> if TyCon.isTupleTyCon tycon +-- then +-- Just args +-- else +-- Nothing +-- Nothing -> Nothing -- vim: set ts=8 sw=2 sts=2 expandtab: