X-Git-Url: https://git.stderr.nl/gitweb?a=blobdiff_plain;f=Translator.hs;h=0f60277671f99b646ec427deb8fd82ce92d53169;hb=e230d86ae7135a268a72cdffba947a9011001ec2;hp=defa8cabe7990b7dc8bc8bf2841a88884edeac99;hpb=8325780f83f31cc3520029912d0797704d058d7e;p=matthijs%2Fmaster-project%2Fc%CE%BBash.git diff --git a/Translator.hs b/Translator.hs index defa8ca..0f60277 100644 --- a/Translator.hs +++ b/Translator.hs @@ -1,22 +1,34 @@ module Translator where -import GHC +import qualified Directory +import qualified List +import Debug.Trace +import qualified Control.Arrow as Arrow +import GHC hiding (loadModule, sigName) import CoreSyn import qualified CoreUtils import qualified Var import qualified Type import qualified TyCon import qualified DataCon +import qualified HscMain +import qualified SrcLoc +import qualified FastString import qualified Maybe import qualified Module -import qualified Control.Monad.State as State +import qualified Data.Foldable as Foldable +import qualified Control.Monad.Trans.State as State import Name +import qualified Data.Map as Map +import Data.Accessor import Data.Generics import NameEnv ( lookupNameEnv ) +import qualified HscTypes import HscTypes ( cm_binds, cm_types ) import MonadUtils ( liftIO ) import Outputable ( showSDoc, ppr ) import GHC.Paths ( libdir ) import DynFlags ( defaultDynFlags ) +import qualified UniqSupply import List ( find ) import qualified List import qualified Monad @@ -32,104 +44,251 @@ import qualified ForSyDe.Backend.Ppr import Text.PrettyPrint.HughesPJ (render) import TranslatorTypes +import HsValueMap import Pretty +import Normalize import Flatten +import FlattenTypes +import VHDLTypes import qualified VHDL -main = - do - defaultErrorHandler defaultDynFlags $ do - runGhc (Just libdir) $ do - dflags <- getSessionDynFlags - setSessionDynFlags dflags - --target <- guessTarget "adder.hs" Nothing - --liftIO (print (showSDoc (ppr (target)))) - --liftIO $ printTarget target - --setTargets [target] - --load LoadAllTargets - --core <- GHC.compileToCoreSimplified "Adders.hs" - core <- GHC.compileToCoreSimplified "Adders.hs" - --liftIO $ printBinds (cm_binds core) - let binds = Maybe.mapMaybe (findBind (cm_binds core)) ["sfull_adder"] - liftIO $ printBinds binds - -- Turn bind into VHDL - let (vhdl, sess) = State.runState (mkVHDL binds) (VHDLSession 0 []) - liftIO $ putStr $ render $ ForSyDe.Backend.Ppr.ppr vhdl - liftIO $ ForSyDe.Backend.VHDL.FileIO.writeDesignFile vhdl "../vhdl/vhdl/output.vhdl" - liftIO $ putStr $ "\n\nFinal session:\n" ++ prettyShow sess ++ "\n\n" - return () +-- main = do +-- makeVHDL "Alu.hs" "exec" True + +makeVHDL :: String -> String -> Bool -> IO () +makeVHDL filename name stateful = do + -- Load the module + core <- loadModule filename + -- Translate to VHDL + vhdl <- moduleToVHDL core [(name, stateful)] + -- Write VHDL to file + let dir = "./vhdl/" ++ name ++ "/" + mapM (writeVHDL dir) vhdl + return () + +-- | Show the core structure of the given binds in the given file. +listBind :: String -> String -> IO () +listBind filename name = do + core <- loadModule filename + let [(b, expr)] = findBinds core [name] + putStr "\n" + putStr $ prettyShow expr + putStr "\n\n" + putStr $ showSDoc $ ppr expr + putStr "\n\n" + putStr $ showSDoc $ ppr $ CoreUtils.exprType expr + putStr "\n\n" + +-- | Translate the binds with the given names from the given core module to +-- VHDL. The Bool in the tuple makes the function stateful (True) or +-- stateless (False). +moduleToVHDL :: HscTypes.CoreModule -> [(String, Bool)] -> IO [(AST.VHDLId, AST.DesignFile)] +moduleToVHDL core list = do + let (names, statefuls) = unzip list + let binds = findBinds core names + -- Generate a UniqSupply + -- Running + -- egrep -r "(initTcRnIf|mkSplitUniqSupply)" . + -- on the compiler dir of ghc suggests that 'z' is not used to generate a + -- unique supply anywhere. + uniqSupply <- UniqSupply.mkSplitUniqSupply 'z' + -- Turn bind into VHDL + let (vhdl, sess) = State.runState (mkVHDL uniqSupply binds statefuls) (TranslatorSession core 0 Map.empty) + mapM (putStr . render . ForSyDe.Backend.Ppr.ppr . snd) vhdl + putStr $ "\n\nFinal session:\n" ++ prettyShow sess ++ "\n\n" + return vhdl where -- Turns the given bind into VHDL - mkVHDL binds = do + mkVHDL :: UniqSupply.UniqSupply -> [(CoreBndr, CoreExpr)] -> [Bool] -> TranslatorState [(AST.VHDLId, AST.DesignFile)] + mkVHDL uniqSupply binds statefuls = do + let binds'' = map (Arrow.second $ normalize uniqSupply) binds + let binds' = trace ("Before:\n\n" ++ showSDoc ( ppr binds ) ++ "\n\nAfter:\n\n" ++ showSDoc ( ppr binds'')) binds'' -- Add the builtin functions - --mapM (uncurry addFunc) builtin_funcs + --mapM addBuiltIn builtin_funcs -- Create entities and architectures for them - mapM flattenBind binds - return $ AST.DesignFile - [] - [] + --Monad.zipWithM processBind statefuls binds + --modA tsFlatFuncs (Map.map nameFlatFunction) + --flatfuncs <- getA tsFlatFuncs + return $ VHDL.createDesignFiles binds' -printTarget (Target (TargetFile file (Just x)) obj Nothing) = - print $ show file - -printBinds [] = putStr "done\n\n" -printBinds (b:bs) = do - printBind b - putStr "\n" - printBinds bs +-- | Write the given design file to a file with the given name inside the +-- given dir +writeVHDL :: String -> (AST.VHDLId, AST.DesignFile) -> IO () +writeVHDL dir (name, vhdl) = do + -- Create the dir if needed + exists <- Directory.doesDirectoryExist dir + Monad.unless exists $ Directory.createDirectory dir + -- Find the filename + let fname = dir ++ (AST.fromVHDLId name) ++ ".vhdl" + -- Write the file + ForSyDe.Backend.VHDL.FileIO.writeDesignFile vhdl fname -printBind (NonRec b expr) = do - putStr "NonRec: " - printBind' (b, expr) +-- | Loads the given file and turns it into a core module. +loadModule :: String -> IO HscTypes.CoreModule +loadModule filename = + defaultErrorHandler defaultDynFlags $ do + runGhc (Just libdir) $ do + dflags <- getSessionDynFlags + setSessionDynFlags dflags + --target <- guessTarget "adder.hs" Nothing + --liftIO (print (showSDoc (ppr (target)))) + --liftIO $ printTarget target + --setTargets [target] + --load LoadAllTargets + --core <- GHC.compileToCoreSimplified "Adders.hs" + core <- GHC.compileToCoreModule filename + return core -printBind (Rec binds) = do - putStr "Rec: \n" - foldl1 (>>) (map printBind' binds) +-- | Extracts the named binds from the given module. +findBinds :: HscTypes.CoreModule -> [String] -> [(CoreBndr, CoreExpr)] +findBinds core names = Maybe.mapMaybe (findBind (CoreSyn.flattenBinds $ cm_binds core)) names -printBind' (b, expr) = do - putStr $ getOccString b - putStr $ showSDoc $ ppr expr - putStr "\n" - -findBind :: [CoreBind] -> String -> Maybe CoreBind +-- | Extract a named bind from the given list of binds +findBind :: [(CoreBndr, CoreExpr)] -> String -> Maybe (CoreBndr, CoreExpr) findBind binds lookfor = -- This ignores Recs and compares the name of the bind with lookfor, -- disregarding any namespaces in OccName and extra attributes in Name and -- Var. - find (\b -> case b of - Rec l -> False - NonRec var _ -> lookfor == (occNameString $ nameOccName $ getName var) - ) binds - --- | Flattens the given bind and adds it to the session. Then (recursively) --- finds any functions it uses and does the same with them. -flattenBind :: - CoreBind -- The binder to flatten - -> VHDLState () + find (\(var, _) -> lookfor == (occNameString $ nameOccName $ getName var)) binds -flattenBind (Rec _) = error "Recursive binders not supported" +-- | Processes the given bind as a top level bind. +processBind :: + Bool -- ^ Should this be stateful function? + -> (CoreBndr, CoreExpr) -- ^ The bind to process + -> TranslatorState () -flattenBind bind@(NonRec var expr) = do +processBind stateful bind@(var, expr) = do -- Create the function signature let ty = CoreUtils.exprType expr - let hsfunc = mkHsFunction var ty - --hwfunc <- mkHWFunction bind hsfunc - -- Add it to the session - --addFunc hsfunc hwfunc + let hsfunc = mkHsFunction var ty stateful + flattenBind hsfunc bind + +-- | Flattens the given bind into the given signature and adds it to the +-- session. Then (recursively) finds any functions it uses and does the same +-- with them. +flattenBind :: + HsFunction -- The signature to flatten into + -> (CoreBndr, CoreExpr) -- The bind to flatten + -> TranslatorState () + +flattenBind hsfunc bind@(var, expr) = do + -- Flatten the function let flatfunc = flattenFunction hsfunc bind - addFunc hsfunc flatfunc - let used_hsfuncs = map appFunc (apps flatfunc) - State.mapM resolvFunc used_hsfuncs - return () + -- Propagate state variables + let flatfunc' = propagateState hsfunc flatfunc + -- Store the flat function in the session + modA tsFlatFuncs (Map.insert hsfunc flatfunc') + -- Flatten any functions used + let used_hsfuncs = Maybe.mapMaybe usedHsFunc (flat_defs flatfunc') + mapM_ resolvFunc used_hsfuncs + +-- | Decide which incoming state variables will become state in the +-- given function, and which will be propagate to other applied +-- functions. +propagateState :: + HsFunction + -> FlatFunction + -> FlatFunction + +propagateState hsfunc flatfunc = + flatfunc {flat_defs = apps', flat_sigs = sigs'} + where + (olds, news) = unzip $ getStateSignals hsfunc flatfunc + states' = zip olds news + -- Find all signals used by all sigdefs + uses = concatMap sigDefUses (flat_defs flatfunc) + -- Find all signals that are used more than once (is there a + -- prettier way to do this?) + multiple_uses = uses List.\\ (List.nub uses) + -- Find the states whose "old state" signal is used only once + single_use_states = filter ((`notElem` multiple_uses) . fst) states' + -- See if these single use states can be propagated + (substate_sigss, apps') = unzip $ map (propagateState' single_use_states) (flat_defs flatfunc) + substate_sigs = concat substate_sigss + -- Mark any propagated state signals as SigSubState + sigs' = map + (\(id, info) -> (id, if id `elem` substate_sigs then info {sigUse = SigSubState} else info)) + (flat_sigs flatfunc) + +-- | Propagate the state into a single function application. +propagateState' :: + [(SignalId, SignalId)] + -- ^ TODO + -> SigDef -- ^ The SigDef to process. + -> ([SignalId], SigDef) + -- ^ Any signal ids that should become substates, + -- and the resulting application. + +propagateState' states def = + if (is_FApp def) then + (our_old ++ our_new, def {appFunc = hsfunc'}) + else + ([], def) + where + hsfunc = appFunc def + args = appArgs def + res = appRes def + our_states = filter our_state states + -- A state signal belongs in this function if the old state is + -- passed in, and the new state returned + our_state (old, new) = + any (old `Foldable.elem`) args + && new `Foldable.elem` res + (our_old, our_new) = unzip our_states + -- Mark the result + zipped_res = zipValueMaps res (hsFuncRes hsfunc) + res' = fmap (mark_state (zip our_new [0..])) zipped_res + -- Mark the args + zipped_args = zipWith zipValueMaps args (hsFuncArgs hsfunc) + args' = map (fmap (mark_state (zip our_old [0..]))) zipped_args + hsfunc' = hsfunc {hsFuncArgs = args', hsFuncRes = res'} + + mark_state :: [(SignalId, StateId)] -> (SignalId, HsValueUse) -> HsValueUse + mark_state states (id, use) = + case lookup id states of + Nothing -> use + Just state_id -> State state_id +-- | Returns pairs of signals that should be mapped to state in this function. +getStateSignals :: + HsFunction -- | The function to look at + -> FlatFunction -- | The function to look at + -> [(SignalId, SignalId)] + -- | TODO The state signals. The first is the state number, the second the + -- signal to assign the current state to, the last is the signal + -- that holds the new state. + +getStateSignals hsfunc flatfunc = + [(old_id, new_id) + | (old_num, old_id) <- args + , (new_num, new_id) <- res + , old_num == new_num] + where + sigs = flat_sigs flatfunc + -- Translate args and res to lists of (statenum, sigid) + args = concat $ zipWith stateList (hsFuncArgs hsfunc) (flat_args flatfunc) + res = stateList (hsFuncRes hsfunc) (flat_res flatfunc) + -- | Find the given function, flatten it and add it to the session. Then -- (recursively) do the same for any functions used. resolvFunc :: HsFunction -- | The function to look for - -> VHDLState () + -> TranslatorState () -resolvFunc hsfunc = - return () +resolvFunc hsfunc = do + flatfuncmap <- getA tsFlatFuncs + -- Don't do anything if there is already a flat function for this hsfunc or + -- when it is a builtin function. + Monad.unless (Map.member hsfunc flatfuncmap) $ do + -- Not working with new builtins -- Monad.unless (elem hsfunc VHDL.builtin_hsfuncs) $ do + -- New function, resolve it + core <- getA tsCoreModule + -- Find the named function + let name = (hsFuncName hsfunc) + let bind = findBind (CoreSyn.flattenBinds $ cm_binds core) name + case bind of + Nothing -> error $ "Couldn't find function " ++ name ++ " in current module." + Just b -> flattenBind hsfunc b -- | Translate a top level function declaration to a HsFunction. i.e., which -- interface will be provided by this function. This function essentially @@ -137,27 +296,56 @@ resolvFunc hsfunc = mkHsFunction :: Var.Var -- ^ The function defined -> Type -- ^ The function type (including arguments!) + -> Bool -- ^ Is this a stateful function? -> HsFunction -- ^ The resulting HsFunction -mkHsFunction f ty = +mkHsFunction f ty stateful= HsFunction hsname hsargs hsres where hsname = getOccString f (arg_tys, res_ty) = Type.splitFunTys ty - -- The last argument must be state - state_ty = last arg_tys - state = useAsState (mkHsValueMap state_ty) - -- All but the last argument are inports - inports = map (useAsPort . mkHsValueMap)(init arg_tys) - hsargs = inports ++ [state] - hsres = case splitTupleType res_ty of - -- Result type must be a two tuple (state, ports) - Just [outstate_ty, outport_ty] -> if Type.coreEqType state_ty outstate_ty - then - Tuple [state, useAsPort (mkHsValueMap outport_ty)] - else - error $ "Input state type of function " ++ hsname ++ ": " ++ (showSDoc $ ppr state_ty) ++ " does not match output state type: " ++ (showSDoc $ ppr outstate_ty) - otherwise -> error $ "Return type of top-level function " ++ hsname ++ " must be a two-tuple containing a state and output ports." + (hsargs, hsres) = + if stateful + then + let + -- The last argument must be state + state_ty = last arg_tys + state = useAsState (mkHsValueMap state_ty) + -- All but the last argument are inports + inports = map (useAsPort . mkHsValueMap)(init arg_tys) + hsargs = inports ++ [state] + hsres = case splitTupleType res_ty of + -- Result type must be a two tuple (state, ports) + Just [outstate_ty, outport_ty] -> if Type.coreEqType state_ty outstate_ty + then + Tuple [state, useAsPort (mkHsValueMap outport_ty)] + else + error $ "Input state type of function " ++ hsname ++ ": " ++ (showSDoc $ ppr state_ty) ++ " does not match output state type: " ++ (showSDoc $ ppr outstate_ty) + otherwise -> error $ "Return type of top-level function " ++ hsname ++ " must be a two-tuple containing a state and output ports." + in + (hsargs, hsres) + else + -- Just use everything as a port + (map (useAsPort . mkHsValueMap) arg_tys, useAsPort $ mkHsValueMap res_ty) + +-- | Adds signal names to the given FlatFunction +nameFlatFunction :: + FlatFunction + -> FlatFunction + +nameFlatFunction flatfunc = + -- Name the signals + let + s = flat_sigs flatfunc + s' = map nameSignal s in + flatfunc { flat_sigs = s' } + where + nameSignal :: (SignalId, SignalInfo) -> (SignalId, SignalInfo) + nameSignal (id, info) = + let hints = nameHints info in + let parts = ("sig" : hints) ++ [show id] in + let name = concat $ List.intersperse "_" parts in + (id, info {sigName = Just name}) -- | Splits a tuple type into a list of element types, or Nothing if the type -- is not a tuple type.