X-Git-Url: https://git.stderr.nl/gitweb?a=blobdiff_plain;f=Generate.hs;h=0a9e9b590eab31c3157c3b6c5ac807beabcef163;hb=c154f599b83d1a91e99993666139e01f10033d5c;hp=7de216129dfbed6cf4d55fb4e415d00fbc746c19;hpb=0c113a538aa9a891935665481782bdce8350e345;p=matthijs%2Fmaster-project%2Fc%CE%BBash.git diff --git a/Generate.hs b/Generate.hs index 7de2161..0a9e9b5 100644 --- a/Generate.hs +++ b/Generate.hs @@ -4,6 +4,7 @@ module Generate where import qualified Control.Monad as Monad import qualified Data.Map as Map import qualified Maybe +import qualified Data.Either as Either import Data.Accessor import Debug.Trace @@ -14,6 +15,7 @@ import qualified ForSyDe.Backend.VHDL.AST as AST import CoreSyn import Type import qualified Var +import qualified IdInfo -- Local imports import Constants @@ -22,216 +24,259 @@ import VHDLTools import CoreTools import Pretty +----------------------------------------------------------------------------- +-- Functions to generate VHDL for builtin functions +----------------------------------------------------------------------------- + -- | A function to wrap a builder-like function that expects its arguments to -- be expressions. genExprArgs :: (dst -> func -> [AST.Expr] -> res) - -> (dst -> func -> [CoreSyn.CoreExpr] -> res) + -> (dst -> func -> [Either CoreSyn.CoreExpr AST.Expr] -> res) genExprArgs wrap dst func args = wrap dst func args' - where args' = map (varToVHDLExpr.exprToVar) args + where args' = map (either (varToVHDLExpr.exprToVar) id) args -- | A function to wrap a builder-like function that expects its arguments to -- be variables. genVarArgs :: (dst -> func -> [Var.Var] -> res) - -> (dst -> func -> [CoreSyn.CoreExpr] -> res) + -> (dst -> func -> [Either CoreSyn.CoreExpr AST.Expr] -> res) genVarArgs wrap dst func args = wrap dst func args' - where args' = map exprToVar args + where + args' = map exprToVar exprargs + -- Check (rather crudely) that all arguments are CoreExprs + (exprargs, []) = Either.partitionEithers args -- | A function to wrap a builder-like function that produces an expression -- and expects it to be assigned to the destination. genExprRes :: - (CoreSyn.CoreBndr -> func -> [arg] -> VHDLSession AST.Expr) - -> (CoreSyn.CoreBndr -> func -> [arg] -> VHDLSession [AST.ConcSm]) + ((Either CoreSyn.CoreBndr AST.VHDLName) -> func -> [arg] -> VHDLSession AST.Expr) + -> ((Either CoreSyn.CoreBndr AST.VHDLName) -> func -> [arg] -> VHDLSession [AST.ConcSm]) genExprRes wrap dst func args = do expr <- wrap dst func args - return $ [mkUncondAssign (Left dst) expr] + return $ [mkUncondAssign dst expr] -- | Generate a binary operator application. The first argument should be a -- constructor from the AST.Expr type, e.g. AST.And. genOperator2 :: (AST.Expr -> AST.Expr -> AST.Expr) -> BuiltinBuilder genOperator2 op = genExprArgs $ genExprRes (genOperator2' op) -genOperator2' :: (AST.Expr -> AST.Expr -> AST.Expr) -> CoreSyn.CoreBndr -> CoreSyn.CoreBndr -> [AST.Expr] -> VHDLSession AST.Expr -genOperator2' op res f [arg1, arg2] = return $ op arg1 arg2 +genOperator2' :: (AST.Expr -> AST.Expr -> AST.Expr) -> dst -> CoreSyn.CoreBndr -> [AST.Expr] -> VHDLSession AST.Expr +genOperator2' op _ f [arg1, arg2] = return $ op arg1 arg2 -- | Generate a unary operator application genOperator1 :: (AST.Expr -> AST.Expr) -> BuiltinBuilder genOperator1 op = genExprArgs $ genExprRes (genOperator1' op) -genOperator1' :: (AST.Expr -> AST.Expr) -> CoreSyn.CoreBndr -> CoreSyn.CoreBndr -> [AST.Expr] -> VHDLSession AST.Expr -genOperator1' op res f [arg] = return $ op arg +genOperator1' :: (AST.Expr -> AST.Expr) -> dst -> CoreSyn.CoreBndr -> [AST.Expr] -> VHDLSession AST.Expr +genOperator1' op _ f [arg] = return $ op arg -- | Generate a function call from the destination binder, function name and a -- list of expressions (its arguments) genFCall :: BuiltinBuilder genFCall = genExprArgs $ genExprRes genFCall' -genFCall' :: CoreSyn.CoreBndr -> CoreSyn.CoreBndr -> [AST.Expr] -> VHDLSession AST.Expr -genFCall' res f args = do +genFCall' :: Either CoreSyn.CoreBndr AST.VHDLName -> CoreSyn.CoreBndr -> [AST.Expr] -> VHDLSession AST.Expr +genFCall' (Left res) f args = do let fname = varToString f let el_ty = (tfvec_elem . Var.varType) res id <- vectorFunId el_ty fname return $ AST.PrimFCall $ AST.FCall (AST.NSimple id) $ map (\exp -> Nothing AST.:=>: AST.ADExpr exp) args +genFCall' (Right name) _ _ = error $ "Cannot generate builtin function call assigned to a VHDLName: " ++ show name -- | Generate a generate statement for the builtin function "map" genMap :: BuiltinBuilder genMap = genVarArgs genMap' -genMap' res f [mapped_f, arg] = do - signatures <- getA vsSignatures - let entity = Maybe.fromMaybe - (error $ "Using function '" ++ (varToString mapped_f) ++ "' without signature? This should not happen!") - (Map.lookup mapped_f signatures) +genMap' :: (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> VHDLSession [AST.ConcSm] +genMap' (Left res) f [mapped_f, arg] = let -- Setup the generate scheme len = (tfvec_len . Var.varType) res + -- TODO: Use something better than varToString label = mkVHDLExtId ("mapVector" ++ (varToString res)) - nPar = AST.unsafeVHDLBasicId "n" + n_id = mkVHDLBasicId "n" + n_expr = idToVHDLExpr n_id range = AST.ToRange (AST.PrimLit "0") (AST.PrimLit $ show (len-1)) - genScheme = AST.ForGn nPar range - -- Get the entity name and port names - entity_id = ent_id entity - argports = map (Monad.liftM fst) (ent_args entity) - resport = (Monad.liftM fst) (ent_res entity) - -- Assign the ports - inport = mkAssocElemIndexed (argports!!0) (varToString arg) nPar - outport = mkAssocElemIndexed resport (varToString res) nPar - clk_port = mkAssocElem (Just $ mkVHDLExtId "clk") "clk" - portassigns = Maybe.catMaybes [inport,outport,clk_port] - -- Generate the portmap - mapLabel = "map" ++ (AST.fromVHDLId entity_id) - compins = mkComponentInst mapLabel entity_id portassigns - -- Return the generate functions - genSm = AST.CSGSm $ AST.GenerateSm label genScheme [] [compins] - in - return $ [genSm] + genScheme = AST.ForGn n_id range + + -- Create the content of the generate statement: Applying the mapped_f to + -- each of the elements in arg, storing to each element in res + resname = mkIndexedName (varToVHDLName res) n_expr + argexpr = vhdlNameToVHDLExpr $ mkIndexedName (varToVHDLName arg) n_expr + in do + app_concsms <- genApplication (Right resname) mapped_f [Right argexpr] + -- Return the generate statement + return [AST.CSGSm $ AST.GenerateSm label genScheme [] app_concsms] + +genMap' (Right name) _ _ = error $ "Cannot generate map function call assigned to a VHDLName: " ++ show name genZipWith :: BuiltinBuilder genZipWith = genVarArgs genZipWith' -genZipWith' res f args@[zipped_f, arg1, arg2] = do - signatures <- getA vsSignatures - let entity = Maybe.fromMaybe - (error $ "Using function '" ++ (varToString zipped_f) ++ "' without signature? This should not happen!") - (Map.lookup zipped_f signatures) +genZipWith' :: (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> VHDLSession [AST.ConcSm] +genZipWith' (Left res) f args@[zipped_f, arg1, arg2] = let -- Setup the generate scheme len = (tfvec_len . Var.varType) res + -- TODO: Use something better than varToString label = mkVHDLExtId ("zipWithVector" ++ (varToString res)) - nPar = AST.unsafeVHDLBasicId "n" + n_id = mkVHDLBasicId "n" + n_expr = idToVHDLExpr n_id range = AST.ToRange (AST.PrimLit "0") (AST.PrimLit $ show (len-1)) - genScheme = AST.ForGn nPar range - -- Get the entity name and port names - entity_id = ent_id entity - argports = map (Monad.liftM fst) (ent_args entity) - resport = (Monad.liftM fst) (ent_res entity) - -- Assign the ports - inport1 = mkAssocElemIndexed (argports!!0) (varToString arg1) nPar - inport2 = mkAssocElemIndexed (argports!!1) (varToString arg2) nPar - outport = mkAssocElemIndexed resport (varToString res) nPar - clk_port = mkAssocElem (Just $ mkVHDLExtId "clk") "clk" - portassigns = Maybe.catMaybes [inport1,inport2,outport,clk_port] - -- Generate the portmap - mapLabel = "zipWith" ++ (AST.fromVHDLId entity_id) - compins = mkComponentInst mapLabel entity_id portassigns + genScheme = AST.ForGn n_id range + + -- Create the content of the generate statement: Applying the zipped_f to + -- each of the elements in arg1 and arg2, storing to each element in res + resname = mkIndexedName (varToVHDLName res) n_expr + argexpr1 = vhdlNameToVHDLExpr $ mkIndexedName (varToVHDLName arg1) n_expr + argexpr2 = vhdlNameToVHDLExpr $ mkIndexedName (varToVHDLName arg2) n_expr + in do + app_concsms <- genApplication (Right resname) zipped_f [Right argexpr1, Right argexpr2] -- Return the generate functions - genSm = AST.CSGSm $ AST.GenerateSm label genScheme [] [compins] - in - return $ [genSm] + return [AST.CSGSm $ AST.GenerateSm label genScheme [] app_concsms] genFoldl :: BuiltinBuilder -genFoldl = genVarArgs genFoldl' -genFoldl' resVal f [folded_f, startVal, inVec] = do - signatures <- getA vsSignatures - let entity = Maybe.fromMaybe - (error $ "Using function '" ++ (varToString folded_f) ++ "' without signature? This should not happen!") - (Map.lookup folded_f signatures) - let (vec, _) = splitAppTy (Var.varType inVec) - let vecty = Type.mkAppTy vec (Var.varType startVal) - vecType <- vhdl_ty vecty +genFoldl = genFold True + +genFoldr :: BuiltinBuilder +genFoldr = genFold False + +genFold :: Bool -> BuiltinBuilder +genFold left = genVarArgs (genFold' left) +genFold' :: Bool -> (Either CoreSyn.CoreBndr AST.VHDLName) -> CoreSyn.CoreBndr -> [Var.Var] -> VHDLSession [AST.ConcSm] +-- Special case for an empty input vector, just assign start to res +genFold' left (Left res) _ [_, start, vec] | len == 0 = return [mkUncondAssign (Left res) (varToVHDLExpr start)] + where len = (tfvec_len . Var.varType) vec +genFold' left (Left res) f [folded_f, start, vec] = do + -- evec is (TFVec n), so it still needs an element type + let (nvec, _) = splitAppTy (Var.varType vec) + -- Put the type of the start value in nvec, this will be the type of our + -- temporary vector + let tmp_ty = Type.mkAppTy nvec (Var.varType start) + tmp_vhdl_ty <- vhdl_ty tmp_ty -- Setup the generate scheme - let len = (tfvec_len . Var.varType) inVec - let genlabel = mkVHDLExtId ("foldlVector" ++ (varToString inVec)) - let blockLabel = mkVHDLExtId ("foldlVector" ++ (varToString startVal)) - let nPar = AST.unsafeVHDLBasicId "n" - let range = AST.ToRange (AST.PrimLit "0") (AST.PrimLit $ show (len-1)) - let genScheme = AST.ForGn nPar range + let gen_label = mkVHDLExtId ("foldlVector" ++ (varToString vec)) + let block_label = mkVHDLExtId ("foldlVector" ++ (varToString start)) + let gen_range = if left then AST.ToRange (AST.PrimLit "0") len_min_expr + else AST.DownRange len_min_expr (AST.PrimLit "0") + let gen_scheme = AST.ForGn n_id gen_range -- Make the intermediate vector - let tmpVec = AST.BDISD $ AST.SigDec (mkVHDLExtId "tmp") vecType Nothing - -- Return the generate functions - let genSm = AST.GenerateSm genlabel genScheme [] [ AST.CSGSm (genFirstCell entity [startVal, inVec, resVal]) - , AST.CSGSm (genOtherCell entity [startVal, inVec, resVal]) - , AST.CSGSm (genLastCell entity [startVal, inVec, resVal]) - ] - return [AST.CSBSm $ AST.BlockSm blockLabel [] (AST.PMapAspect []) [tmpVec] [AST.CSGSm genSm]] + let tmp_dec = AST.BDISD $ AST.SigDec tmp_id tmp_vhdl_ty Nothing + -- Create the generate statement + cells <- sequence [genFirstCell, genOtherCell] + let gen_sm = AST.GenerateSm gen_label gen_scheme [] (map AST.CSGSm cells) + -- Assign tmp[len-1] or tmp[0] to res + let out_assign = mkUncondAssign (Left res) $ vhdlNameToVHDLExpr (if left then + (mkIndexedName tmp_name (AST.PrimLit $ show (len-1))) else + (mkIndexedName tmp_name (AST.PrimLit "0"))) + let block = AST.BlockSm block_label [] (AST.PMapAspect []) [tmp_dec] [AST.CSGSm gen_sm, out_assign] + return [AST.CSBSm block] where - genFirstCell :: Entity -> [CoreSyn.CoreBndr] -> AST.GenerateSm - genFirstCell entity [startVal, inVec, resVal] = cellGn - where - cellLabel = mkVHDLExtId "firstcell" - cellGenScheme = AST.IfGn ((AST.PrimName $ AST.NSimple nPar) AST.:=: (AST.PrimLit "0")) - nPar = AST.unsafeVHDLBasicId "n" - -- Get the entity name and port names - entity_id = ent_id entity - argports = map (Monad.liftM fst) (ent_args entity) - resport = (Monad.liftM fst) (ent_res entity) - -- Assign the ports - inport1 = mkAssocElem (argports!!0) (varToString startVal) - inport2 = mkAssocElemIndexed (argports!!1) (varToString inVec) nPar - outport = mkAssocElemIndexed resport "tmp" nPar - clk_port = mkAssocElem (Just $ mkVHDLExtId "clk") "clk" - portassigns = Maybe.catMaybes [inport1,inport2,outport,clk_port] - -- Generate the portmap - mapLabel = "cell" ++ (AST.fromVHDLId entity_id) - compins = mkComponentInst mapLabel entity_id portassigns - -- Return the generate functions - cellGn = AST.GenerateSm cellLabel cellGenScheme [] [compins] - genOtherCell :: Entity -> [CoreSyn.CoreBndr] -> AST.GenerateSm - genOtherCell entity [startVal, inVec, resVal] = cellGn - where - len = (tfvec_len . Var.varType) inVec - cellLabel = mkVHDLExtId "othercell" - cellGenScheme = AST.IfGn $ AST.And ((AST.PrimName $ AST.NSimple nPar) AST.:>: (AST.PrimLit "0")) - ((AST.PrimName $ AST.NSimple nPar) AST.:<: (AST.PrimLit $ show (len-1))) - nPar = AST.unsafeVHDLBasicId "n" - -- Get the entity name and port names - entity_id = ent_id entity - argports = map (Monad.liftM fst) (ent_args entity) - resport = (Monad.liftM fst) (ent_res entity) - -- Assign the ports - inport1 = mkAssocElemIndexed (argports!!0) "tmp" (AST.unsafeVHDLBasicId "n-1") - inport2 = mkAssocElemIndexed (argports!!1) (varToString inVec) nPar - outport = mkAssocElemIndexed resport "tmp" nPar - clk_port = mkAssocElem (Just $ mkVHDLExtId "clk") "clk" - portassigns = Maybe.catMaybes [inport1,inport2,outport,clk_port] - -- Generate the portmap - mapLabel = "cell" ++ (AST.fromVHDLId entity_id) - compins = mkComponentInst mapLabel entity_id portassigns - -- Return the generate functions - cellGn = AST.GenerateSm cellLabel cellGenScheme [] [compins] - genLastCell :: Entity -> [CoreSyn.CoreBndr] -> AST.GenerateSm - genLastCell entity [startVal, inVec, resVal] = cellGn - where - len = (tfvec_len . Var.varType) inVec - cellLabel = mkVHDLExtId "lastCell" - cellGenScheme = AST.IfGn ((AST.PrimName $ AST.NSimple nPar) AST.:=: (AST.PrimLit $ show (len-1))) - nPar = AST.unsafeVHDLBasicId "n" - -- Get the entity name and port names - entity_id = ent_id entity - argports = map (Monad.liftM fst) (ent_args entity) - resport = (Monad.liftM fst) (ent_res entity) - -- Assign the ports - inport1 = mkAssocElemIndexed (argports!!0) "tmp" (AST.unsafeVHDLBasicId "n-1") - inport2 = mkAssocElemIndexed (argports!!1) (varToString inVec) nPar - outport = mkAssocElemIndexed resport "tmp" nPar - clk_port = mkAssocElem (Just $ mkVHDLExtId "clk") "clk" - portassigns = Maybe.catMaybes [inport1,inport2,outport,clk_port] - -- Generate the portmap - mapLabel = "cell" ++ (AST.fromVHDLId entity_id) - compins = mkComponentInst mapLabel entity_id portassigns - -- Generate the output assignment - assign = mkUncondAssign (Left resVal) (AST.PrimName (AST.NIndexed (AST.IndexedName - (AST.NSimple (mkVHDLExtId "tmp")) [AST.PrimLit $ show (len-1)]))) - -- Return the generate functions - cellGn = AST.GenerateSm cellLabel cellGenScheme [] [compins,assign] + -- The vector length + len = (tfvec_len . Var.varType) vec + -- An id for the counter + n_id = mkVHDLBasicId "n" + n_cur = idToVHDLExpr n_id + -- An expression for previous n + n_prev = if left then (n_cur AST.:-: (AST.PrimLit "1")) + else (n_cur AST.:+: (AST.PrimLit "1")) + -- An expression for len-1 + len_min_expr = (AST.PrimLit $ show (len-1)) + -- An id for the tmp result vector + tmp_id = mkVHDLBasicId "tmp" + tmp_name = AST.NSimple tmp_id + -- Generate parts of the fold + genFirstCell, genOtherCell :: VHDLSession AST.GenerateSm + genFirstCell = do + let cond_label = mkVHDLExtId "firstcell" + -- if n == 0 or n == len-1 + let cond_scheme = AST.IfGn $ n_cur AST.:=: (if left then (AST.PrimLit "0") + else (AST.PrimLit $ show (len-1))) + -- Output to tmp[current n] + let resname = mkIndexedName tmp_name n_cur + -- Input from start + let argexpr1 = varToVHDLExpr start + -- Input from vec[current n] + let argexpr2 = vhdlNameToVHDLExpr $ mkIndexedName (varToVHDLName vec) n_cur + app_concsms <- genApplication (Right resname) folded_f ( if left then + [Right argexpr1, Right argexpr2] + else + [Right argexpr2, Right argexpr1] + ) + -- Return the conditional generate part + return $ AST.GenerateSm cond_label cond_scheme [] app_concsms + genOtherCell = do + let cond_label = mkVHDLExtId "othercell" + -- if n > 0 or n < len-1 + let cond_scheme = AST.IfGn $ n_cur AST.:/=: (if left then (AST.PrimLit "0") + else (AST.PrimLit $ show (len-1))) + -- Output to tmp[current n] + let resname = mkIndexedName tmp_name n_cur + -- Input from tmp[previous n] + let argexpr1 = vhdlNameToVHDLExpr $ mkIndexedName tmp_name n_prev + -- Input from vec[current n] + let argexpr2 = vhdlNameToVHDLExpr $ mkIndexedName (varToVHDLName vec) n_cur + app_concsms <- genApplication (Right resname) folded_f ( if left then + [Right argexpr1, Right argexpr2] + else + [Right argexpr2, Right argexpr1] + ) + -- Return the conditional generate part + return $ AST.GenerateSm cond_label cond_scheme [] app_concsms + +----------------------------------------------------------------------------- +-- Function to generate VHDL for applications +----------------------------------------------------------------------------- +genApplication :: + (Either CoreSyn.CoreBndr AST.VHDLName) -- ^ Where to store the result? + -> CoreSyn.CoreBndr -- ^ The function to apply + -> [Either CoreSyn.CoreExpr AST.Expr] -- ^ The arguments to apply + -> VHDLSession [AST.ConcSm] -- ^ The resulting concurrent statements +genApplication dst f args = + case Var.globalIdVarDetails f of + IdInfo.DataConWorkId dc -> case dst of + -- It's a datacon. Create a record from its arguments. + Left bndr -> do + -- We have the bndr, so we can get at the type + labels <- getFieldLabels (Var.varType bndr) + return $ zipWith mkassign labels $ map (either exprToVHDLExpr id) args + where + mkassign :: AST.VHDLId -> AST.Expr -> AST.ConcSm + mkassign label arg = + let sel_name = mkSelectedName ((either varToVHDLName id) dst) label in + mkUncondAssign (Right sel_name) arg + Right _ -> error $ "Generate.genApplication Can't generate dataconstructor application without an original binder" + IdInfo.VanillaGlobal -> do + -- It's a global value imported from elsewhere. These can be builtin + -- functions. Look up the function name in the name table and execute + -- the associated builder if there is any and the argument count matches + -- (this should always be the case if it typechecks, but just to be + -- sure...). + case (Map.lookup (varToString f) globalNameTable) of + Just (arg_count, builder) -> + if length args == arg_count then + builder dst f args + else + error $ "Generate.genApplication Incorrect number of arguments to builtin function: " ++ pprString f ++ " Args: " ++ show args + Nothing -> error $ "Using function from another module that is not a known builtin: " ++ pprString f + IdInfo.NotGlobalId -> do + signatures <- getA vsSignatures + -- This is a local id, so it should be a function whose definition we + -- have and which can be turned into a component instantiation. + let + signature = Maybe.fromMaybe + (error $ "Using function '" ++ (varToString f) ++ "' without signature? This should not happen!") + (Map.lookup f signatures) + entity_id = ent_id signature + -- TODO: Using show here isn't really pretty, but we'll need some + -- unique-ish value... + label = "comp_ins_" ++ (either show prettyShow) dst + portmaps = mkAssocElems (map (either exprToVHDLExpr id) args) ((either varToVHDLName id) dst) signature + in + return [mkComponentInst label entity_id portmaps] + details -> error $ "Calling unsupported function " ++ pprString f ++ " with GlobalIdDetails " ++ pprString details + +----------------------------------------------------------------------------- +-- Functions to generate functions dealing with vectors. +----------------------------------------------------------------------------- -- Returns the VHDLId of the vector function with the given name for the given -- element type. Generates -- this function if needed. @@ -272,6 +317,7 @@ genUnconsVectorFuns elemTM vectorTM = , (emptyId, AST.SubProgBody emptySpec [AST.SPCD emptyVar] [emptyExpr]) , (singletonId, AST.SubProgBody singletonSpec [AST.SPVD singletonVar] [singletonRet]) , (copyId, AST.SubProgBody copySpec [AST.SPVD copyVar] [copyExpr]) + , (selId, AST.SubProgBody selSpec [AST.SPVD selVar] [selFor, selRet]) ] where ixPar = AST.unsafeVHDLBasicId "ix" @@ -280,6 +326,8 @@ genUnconsVectorFuns elemTM vectorTM = iId = AST.unsafeVHDLBasicId "i" iPar = iId aPar = AST.unsafeVHDLBasicId "a" + fPar = AST.unsafeVHDLBasicId "f" + sPar = AST.unsafeVHDLBasicId "s" resId = AST.unsafeVHDLBasicId "res" exSpec = AST.Function (mkVHDLExtId exId) [AST.IfaceVarDec vecPar vectorTM, AST.IfaceVarDec ixPar naturalTM] elemTM @@ -441,3 +489,60 @@ genUnconsVectorFuns elemTM vectorTM = (AST.PrimName $ AST.NSimple aPar)]) -- return res copyExpr = AST.ReturnSm (Just $ AST.PrimName $ AST.NSimple resId) + selSpec = AST.Function (mkVHDLExtId selId) [AST.IfaceVarDec fPar naturalTM, + AST.IfaceVarDec sPar naturalTM, + AST.IfaceVarDec nPar naturalTM, + AST.IfaceVarDec vecPar vectorTM ] vectorTM + -- variable res : fsvec_x (0 to n-1); + selVar = + AST.VarDec resId + (AST.SubtypeIn vectorTM + (Just $ AST.ConstraintIndex $ AST.IndexConstraint + [AST.ToRange (AST.PrimLit "0") + ((AST.PrimName (AST.NSimple nPar)) AST.:-: + (AST.PrimLit "1")) ]) + ) + Nothing + -- for i res'range loop + -- res(i) := vec(f+i*s); + -- end loop; + selFor = AST.ForSM iId (AST.AttribRange $ AST.AttribName (AST.NSimple resId) rangeId Nothing) [selAssign] + -- res(i) := vec(f+i*s); + selAssign = let origExp = AST.PrimName (AST.NSimple fPar) AST.:+: + (AST.PrimName (AST.NSimple iId) AST.:*: + AST.PrimName (AST.NSimple sPar)) in + AST.NIndexed (AST.IndexedName (AST.NSimple resId) [AST.PrimName (AST.NSimple iId)]) AST.:= + (AST.PrimName $ AST.NIndexed (AST.IndexedName (AST.NSimple vecPar) [origExp])) + -- return res; + selRet = AST.ReturnSm (Just $ AST.PrimName (AST.NSimple resId)) + +----------------------------------------------------------------------------- +-- A table of builtin functions +----------------------------------------------------------------------------- + +-- | The builtin functions we support. Maps a name to an argument count and a +-- builder function. +globalNameTable :: NameTable +globalNameTable = Map.fromList + [ (exId , (2, genFCall ) ) + , (replaceId , (3, genFCall ) ) + , (headId , (1, genFCall ) ) + , (lastId , (1, genFCall ) ) + , (tailId , (1, genFCall ) ) + , (initId , (1, genFCall ) ) + , (takeId , (2, genFCall ) ) + , (dropId , (2, genFCall ) ) + , (selId , (4, genFCall ) ) + , (plusgtId , (2, genFCall ) ) + , (mapId , (2, genMap ) ) + , (zipWithId , (3, genZipWith ) ) + , (foldlId , (3, genFoldl ) ) + , (foldrId , (3, genFoldr ) ) + , (emptyId , (0, genFCall ) ) + , (singletonId , (1, genFCall ) ) + , (copyId , (2, genFCall ) ) + , (hwxorId , (2, genOperator2 AST.Xor ) ) + , (hwandId , (2, genOperator2 AST.And ) ) + , (hworId , (2, genOperator2 AST.Or ) ) + , (hwnotId , (1, genOperator1 AST.Not ) ) + ]