X-Git-Url: https://git.stderr.nl/gitweb?a=blobdiff_plain;f=Flatten.hs;h=8a230162daf6f43cf21036390c6a072ae261ce8d;hb=41e6a89a1d9347431e80b895cb74ab5ecc03e9b7;hp=b08ead4e9c53937632795b4c20883631ad77fa00;hpb=185b1f477826325e1076ec552a432335867e7b03;p=matthijs%2Fmaster-project%2Fc%CE%BBash.git diff --git a/Flatten.hs b/Flatten.hs index b08ead4..8a23016 100644 --- a/Flatten.hs +++ b/Flatten.hs @@ -4,62 +4,16 @@ import Control.Monad import qualified Var import qualified Type import qualified Name -import qualified TyCon import qualified Maybe -import Data.Traversable import qualified DataCon import qualified CoreUtils import Control.Applicative import Outputable ( showSDoc, ppr ) -import qualified Data.Foldable as Foldable import qualified Control.Monad.State as State --- | A datatype that maps each of the single values in a haskell structure to --- a mapto. The map has the same structure as the haskell type mapped, ie --- nested tuples etc. -data HsValueMap mapto = - Tuple [HsValueMap mapto] - | Single mapto - deriving (Show, Eq, Ord) - -instance Functor HsValueMap where - fmap f (Single s) = Single (f s) - fmap f (Tuple maps) = Tuple (map (fmap f) maps) - -instance Foldable.Foldable HsValueMap where - foldMap f (Single s) = f s - -- The first foldMap folds a list of HsValueMaps, the second foldMap folds - -- each of the HsValueMaps in that list - foldMap f (Tuple maps) = Foldable.foldMap (Foldable.foldMap f) maps - -instance Traversable HsValueMap where - traverse f (Single s) = Single <$> f s - traverse f (Tuple maps) = Tuple <$> (traverse (traverse f) maps) - -data PassState s x = PassState (s -> (s, x)) - -instance Functor (PassState s) where - fmap f (PassState a) = PassState (\s -> let (s', a') = a s in (s', f a')) - -instance Applicative (PassState s) where - pure x = PassState (\s -> (s, x)) - PassState f <*> PassState x = PassState (\s -> let (s', f') = f s; (s'', x') = x s' in (s'', f' x')) - --- | Creates a HsValueMap with the same structure as the given type, using the --- given function for mapping the single types. -mkHsValueMap :: - Type.Type -- ^ The type to map to a HsValueMap - -> HsValueMap Type.Type -- ^ The resulting map and state - -mkHsValueMap ty = - case Type.splitTyConApp_maybe ty of - Just (tycon, args) -> - if (TyCon.isTupleTyCon tycon) - then - Tuple (map mkHsValueMap args) - else - Single ty - Nothing -> Single ty +import HsValueMap +import TranslatorTypes +import FlattenTypes -- Extract the arguments from a data constructor application (that is, the -- normal args, leaving out the type args). @@ -69,122 +23,6 @@ dataConAppArgs dc args = where tycount = length $ DataCon.dataConAllTyVars dc - - -data FlatFunction = FlatFunction { - args :: [SignalDefMap], - res :: SignalUseMap, - --sigs :: [SignalDef], - apps :: [FApp], - conds :: [CondDef] -} deriving (Show, Eq) - -type SignalUseMap = HsValueMap SignalUse -type SignalDefMap = HsValueMap SignalDef - -useMapToDefMap :: SignalUseMap -> SignalDefMap -useMapToDefMap = fmap (\(SignalUse u) -> SignalDef u) - -defMapToUseMap :: SignalDefMap -> SignalUseMap -defMapToUseMap = fmap (\(SignalDef u) -> SignalUse u) - - -type SignalId = Int -data SignalUse = SignalUse { - sigUseId :: SignalId -} deriving (Show, Eq) - -data SignalDef = SignalDef { - sigDefId :: SignalId -} deriving (Show, Eq) - -data FApp = FApp { - appFunc :: HsFunction, - appArgs :: [SignalUseMap], - appRes :: SignalDefMap -} deriving (Show, Eq) - -data CondDef = CondDef { - cond :: SignalUse, - high :: SignalUse, - low :: SignalUse, - condRes :: SignalDef -} deriving (Show, Eq) - --- | How is a given (single) value in a function's type (ie, argument or --- return value) used? -data HsValueUse = - Port -- ^ Use it as a port (input or output) - | State Int -- ^ Use it as state (input or output). The int is used to - -- match input state to output state. - | HighOrder { -- ^ Use it as a high order function input - hoName :: String, -- ^ Which function is passed in? - hoArgs :: [HsUseMap] -- ^ Which arguments are already applied? This - -- ^ map should only contain Port and other - -- HighOrder values. - } - deriving (Show, Eq, Ord) - -type HsUseMap = HsValueMap HsValueUse - --- | Builds a HsUseMap with the same structure has the given HsValueMap in --- which all the Single elements are marked as State, with increasing state --- numbers. -useAsState :: HsValueMap a -> HsUseMap -useAsState map = - map' - where - -- Traverse the existing map, resulting in a function that maps an initial - -- state number to the final state number and the new map - PassState f = traverse asState map - -- Run this function to get the new map - (_, map') = f 0 - -- This function maps each element to a State with a unique number, by - -- incrementing the state count. - asState x = PassState (\s -> (s+1, State s)) - --- | Builds a HsUseMap with the same structure has the given HsValueMap in --- which all the Single elements are marked as Port. -useAsPort :: HsValueMap a -> HsUseMap -useAsPort map = fmap (\x -> Port) map - -data HsFunction = HsFunction { - hsFuncName :: String, - hsFuncArgs :: [HsUseMap], - hsFuncRes :: HsUseMap -} deriving (Show, Eq, Ord) - -type BindMap = [( - CoreBndr, -- ^ The bind name - Either -- ^ The bind value which is either - SignalUseMap -- ^ a signal - ( - HsValueUse, -- ^ or a HighOrder function - [SignalUse] -- ^ With these signals already applied to it - ) - )] - -type FlattenState = State.State ([FApp], [CondDef], SignalId) - --- | Add an application to the current FlattenState -addApp :: FApp -> FlattenState () -addApp a = do - (apps, conds, n) <- State.get - State.put (a:apps, conds, n) - --- | Add a conditional definition to the current FlattenState -addCondDef :: CondDef -> FlattenState () -addCondDef c = do - (apps, conds, n) <- State.get - State.put (apps, c:conds, n) - --- | Generates a new signal id, which is unique within the current flattening. -genSignalId :: FlattenState SignalId -genSignalId = do - (apps, conds, n) <- State.get - State.put (apps, conds, n+1) - return n - genSignalUses :: Type.Type -> FlattenState SignalUseMap