X-Git-Url: https://git.stderr.nl/gitweb?a=blobdiff_plain;f=Flatten.hs;h=4194904c046ea211fbd83a6f0b7978f737415d80;hb=e273d2759db01787f0599a1cbe9059864e1704d7;hp=ee70446eaf5ed1b39ff56630b107a49f07fd1077;hpb=1730303a697c4c35941919ada4e45e7a64803a7f;p=matthijs%2Fmaster-project%2Fc%CE%BBash.git diff --git a/Flatten.hs b/Flatten.hs index ee70446..4194904 100644 --- a/Flatten.hs +++ b/Flatten.hs @@ -1,101 +1,50 @@ module Flatten where import CoreSyn +import Control.Monad +import qualified Var +import qualified Type +import qualified Name +import qualified Maybe +import qualified Control.Arrow as Arrow +import qualified DataCon +import qualified CoreUtils +import qualified Data.Traversable as Traversable +import qualified Data.Foldable as Foldable +import Control.Applicative +import Outputable ( showSDoc, ppr ) import qualified Control.Monad.State as State --- | A datatype that maps each of the single values in a haskell structure to --- a mapto. The map has the same structure as the haskell type mapped, ie --- nested tuples etc. -data HsValueMap mapto = - Tuple [HsValueMap mapto] - | Single mapto - | Unused - deriving (Show, Eq) - -data FlatFunction = FlatFunction { - args :: [SignalDefMap], - res :: SignalUseMap, - --sigs :: [SignalDef], - apps :: [App], - conds :: [CondDef] -} deriving (Show, Eq) - -type SignalUseMap = HsValueMap SignalUse -type SignalDefMap = HsValueMap SignalDef - -type SignalId = Int -data SignalUse = SignalUse { - sigUseId :: SignalId -} deriving (Show, Eq) - -data SignalDef = SignalDef { - sigDefId :: SignalId -} deriving (Show, Eq) - -data App = App { - appFunc :: HsFunction, - appArgs :: [SignalUseMap], - appRes :: SignalDefMap -} deriving (Show, Eq) - -data CondDef = CondDef { - cond :: SignalUse, - high :: SignalUse, - low :: SignalUse, - condRes :: SignalDef -} deriving (Show, Eq) - --- | How is a given (single) value in a function's type (ie, argument or --- return value) used? -data HsValueUse = - Port -- ^ Use it as a port (input or output) - | State Int -- ^ Use it as state (input or output). The int is used to - -- match input state to output state. - | HighOrder { -- ^ Use it as a high order function input - hoName :: String, -- ^ Which function is passed in? - hoArgs :: [HsUseMap] -- ^ Which arguments are already applied? This - -- ^ map should only contain Port and other - -- HighOrder values. - } - deriving (Show, Eq) - -type HsUseMap = HsValueMap HsValueUse - -data HsFunction = HsFunction { - hsFuncName :: String, - hsFuncArgs :: [HsUseMap], - hsFuncRes :: HsUseMap -} deriving (Show, Eq) - -type BindMap = [( - String, -- ^ The bind name - Either -- ^ The bind value which is either - SignalUse -- ^ a signal - ( - HsValueUse, -- ^ or a HighOrder function - [SignalUse] -- ^ With these signals already applied to it - ) - )] - -type FlattenState = State.State ([App], [CondDef], SignalId) - --- | Add an application to the current FlattenState -addApp :: App -> FlattenState () -addApp a = do - (apps, conds, n) <- State.get - State.put (a:apps, conds, n) - --- | Add a conditional definition to the current FlattenState -addCondDef :: CondDef -> FlattenState () -addCondDef c = do - (apps, conds, n) <- State.get - State.put (apps, c:conds, n) - --- | Generates a new signal id, which is unique within the current flattening. -genSignalId :: FlattenState SignalId -genSignalId = do - (apps, conds, n) <- State.get - State.put (apps, conds, n+1) - return n +import HsValueMap +import TranslatorTypes +import FlattenTypes + +-- Extract the arguments from a data constructor application (that is, the +-- normal args, leaving out the type args). +dataConAppArgs :: DataCon.DataCon -> [CoreExpr] -> [CoreExpr] +dataConAppArgs dc args = + drop tycount args + where + tycount = length $ DataCon.dataConAllTyVars dc + +genSignals :: + Type.Type + -> FlattenState SignalMap + +genSignals ty = + -- First generate a map with the right structure containing the types, and + -- generate signals for each of them. + Traversable.mapM (\ty -> genSignalId SigInternal ty) (mkHsValueMap ty) + +-- | Marks a signal as the given SigUse, if its id is in the list of id's +-- given. +markSignals :: SigUse -> [SignalId] -> (SignalId, SignalInfo) -> (SignalId, SignalInfo) +markSignals use ids (id, info) = + (id, info') + where + info' = if id `elem` ids then info { sigUse = use} else info + +markSignal :: SigUse -> SignalId -> (SignalId, SignalInfo) -> (SignalId, SignalInfo) +markSignal use id = markSignals use [id] -- | Flatten a haskell function flattenFunction :: @@ -105,21 +54,201 @@ flattenFunction :: flattenFunction _ (Rec _) = error "Recursive binders not supported" flattenFunction hsfunc bind@(NonRec var expr) = - FlatFunction args res apps conds + FlatFunction args res apps conds sigs'''' where - init_state = ([], [], 0) - (fres, end_state) = State.runState (flattenExpr expr) init_state + init_state = ([], [], [], 0) + (fres, end_state) = State.runState (flattenExpr [] expr) init_state + (apps, conds, sigs, _) = end_state (args, res) = fres - (apps, conds, _) = end_state + arg_ports = concat (map Foldable.toList args) + res_ports = Foldable.toList res + -- Mark args and result signals as input and output ports resp. + sigs' = fmap (markSignals SigPortIn arg_ports) sigs + sigs'' = fmap (markSignals SigPortOut res_ports) sigs' + -- Mark args and result states as old and new state resp. + args_states = concat $ zipWith stateList (hsFuncArgs hsfunc) args + sigs''' = foldl (\s (num, id) -> map (markSignal (SigStateOld num) id) s) sigs'' args_states + res_states = stateList (hsFuncRes hsfunc) res + sigs'''' = foldl (\s (num, id) -> map (markSignal (SigStateNew num) id) s) sigs''' res_states flattenExpr :: - CoreExpr - -> FlattenState ([SignalDefMap], SignalUseMap) - -flattenExpr _ = do + BindMap + -> CoreExpr + -> FlattenState ([SignalMap], SignalMap) + +flattenExpr binds lam@(Lam b expr) = do + -- Find the type of the binder + let (arg_ty, _) = Type.splitFunTy (CoreUtils.exprType lam) + -- Create signal names for the binder + defs <- genSignals arg_ty + let binds' = (b, Left defs):binds + (args, res) <- flattenExpr binds' expr + return (defs : args, res) + +flattenExpr binds (Var id) = + case bind of + Left sig_use -> return ([], sig_use) + Right _ -> error "Higher order functions not supported." + where + bind = Maybe.fromMaybe + (error $ "Argument " ++ Name.getOccString id ++ "is unknown") + (lookup id binds) + +flattenExpr binds app@(App _ _) = do + -- Is this a data constructor application? + case CoreUtils.exprIsConApp_maybe app of + -- Is this a tuple construction? + Just (dc, args) -> if DataCon.isTupleCon dc + then + flattenBuildTupleExpr binds (dataConAppArgs dc args) + else + error $ "Data constructors other than tuples not supported: " ++ (showSDoc $ ppr app) + otherwise -> + -- Normal function application + let ((Var f), args) = collectArgs app in + flattenApplicationExpr binds (CoreUtils.exprType app) f args + where + flattenBuildTupleExpr binds args = do + -- Flatten each of our args + flat_args <- (State.mapM (flattenExpr binds) args) + -- Check and split each of the arguments + let (_, arg_ress) = unzip (zipWith checkArg args flat_args) + let res = Tuple arg_ress + return ([], res) + + -- | Flatten a normal application expression + flattenApplicationExpr binds ty f args = do + -- Find the function to call + let func = appToHsFunction ty f args + -- Flatten each of our args + flat_args <- (State.mapM (flattenExpr binds) args) + -- Check and split each of the arguments + let (_, arg_ress) = unzip (zipWith checkArg args flat_args) + -- Generate signals for our result + res <- genSignals ty + -- Create the function application + let app = FApp { + appFunc = func, + appArgs = arg_ress, + appRes = res + } + addApp app + return ([], res) + -- | Check a flattened expression to see if it is valid to use as a + -- function argument. The first argument is the original expression for + -- use in the error message. + checkArg arg flat = + let (args, res) = flat in + if not (null args) + then error $ "Passing lambda expression or function as a function argument not supported: " ++ (showSDoc $ ppr arg) + else flat + +flattenExpr binds l@(Let (NonRec b bexpr) expr) = do + (b_args, b_res) <- flattenExpr binds bexpr + if not (null b_args) + then + error $ "Higher order functions not supported in let expression: " ++ (showSDoc $ ppr l) + else + let binds' = (b, Left b_res) : binds in + flattenExpr binds' expr + +flattenExpr binds l@(Let (Rec _) _) = error $ "Recursive let definitions not supported: " ++ (showSDoc $ ppr l) + +flattenExpr binds expr@(Case (Var v) b _ alts) = + case alts of + [alt] -> flattenSingleAltCaseExpr binds v b alt + otherwise -> error $ "Multiple alternative case expression not supported: " ++ (showSDoc $ ppr expr) + where + flattenSingleAltCaseExpr :: + BindMap + -- A list of bindings in effect + -> Var.Var -- The scrutinee + -> CoreBndr -- The binder to bind the scrutinee to + -> CoreAlt -- The single alternative + -> FlattenState ( [SignalMap], SignalMap) + -- See expandExpr + flattenSingleAltCaseExpr binds v b alt@(DataAlt datacon, bind_vars, expr) = + if not (DataCon.isTupleCon datacon) + then + error $ "Dataconstructors other than tuple constructors not supported in case pattern of alternative: " ++ (showSDoc $ ppr alt) + else + let + -- Lookup the scrutinee (which must be a variable bound to a tuple) in + -- the existing bindings list and get the portname map for each of + -- it's elements. + Left (Tuple tuple_sigs) = Maybe.fromMaybe + (error $ "Case expression uses unknown scrutinee " ++ Name.getOccString v) + (lookup v binds) + -- TODO include b in the binds list + -- Merge our existing binds with the new binds. + binds' = (zip bind_vars (map Left tuple_sigs)) ++ binds + in + -- Expand the expression with the new binds list + flattenExpr binds' expr + flattenSingleAltCaseExpr _ _ _ alt = error $ "Case patterns other than data constructors not supported in case alternative: " ++ (showSDoc $ ppr alt) + + + +flattenExpr _ _ = do return ([], Tuple []) +appToHsFunction :: + Type.Type -- ^ The return type + -> Var.Var -- ^ The function to call + -> [CoreExpr] -- ^ The function arguments + -> HsFunction -- ^ The needed HsFunction +appToHsFunction ty f args = + HsFunction hsname hsargs hsres + where + hsname = Name.getOccString f + hsargs = map (useAsPort . mkHsValueMap . CoreUtils.exprType) args + hsres = useAsPort (mkHsValueMap ty) + +-- | Filters non-state signals and returns the state number and signal id for +-- state values. +filterState :: + SignalId -- | The signal id to look at + -> HsValueUse -- | How is this signal used? + -> Maybe (Int, SignalId ) -- | The state num and signal id, if this + -- signal was used as state + +filterState id (State num) = + Just (num, id) +filterState _ _ = Nothing + +-- | Returns a list of the state number and signal id of all used-as-state +-- signals in the given maps. +stateList :: + HsUseMap + -> (SignalMap) + -> [(Int, SignalId)] + +stateList uses signals = + Maybe.catMaybes $ Foldable.toList $ zipValueMapsWith filterState signals uses + +-- | Returns pairs of signals that should be mapped to state in this function. +getOwnStates :: + HsFunction -- | The function to look at + -> FlatFunction -- | The function to look at + -> [(Int, SignalInfo, SignalInfo)] + -- | The state signals. The first is the state number, the second the + -- signal to assign the current state to, the last is the signal + -- that holds the new state. + +getOwnStates hsfunc flatfunc = + [(old_num, old_info, new_info) + | (old_num, old_info) <- args_states + , (new_num, new_info) <- res_states + , old_num == new_num] + where + sigs = flat_sigs flatfunc + -- Translate args and res to lists of (statenum, sigid) + args = concat $ zipWith stateList (hsFuncArgs hsfunc) (flat_args flatfunc) + res = stateList (hsFuncRes hsfunc) (flat_res flatfunc) + -- Replace the second tuple element with the corresponding SignalInfo + args_states = map (Arrow.second $ signalInfo sigs) args + res_states = map (Arrow.second $ signalInfo sigs) res - + -- vim: set ts=8 sw=2 sts=2 expandtab: