X-Git-Url: https://git.stderr.nl/gitweb?a=blobdiff_plain;f=FFT.mc;h=6688275a9f32d7a7341ead36d3859efe18578e57;hb=81823b7486c210898290292ed87142a89c496946;hp=e58d2fa771e0c644297c99d1935d66dd8b1055ba;hpb=e09e88b193ec1b84311b345abb2b9d7943060602;p=matthijs%2Fprojects%2Fmontium-fft.git diff --git a/FFT.mc b/FFT.mc index e58d2fa..6688275 100644 --- a/FFT.mc +++ b/FFT.mc @@ -6,28 +6,21 @@ #include "FFT.h" - word in_a_re, in_a_im, in_b_re, in_b_im, in_W_re, in_W_im; - //out_a_re, out_a_im, out_b_re, out_b_im; - //mem input_a_re, input_a_im, input_b_re, input_b_im, output_a_re, output_a_im, output_b_re, output_b_im, twiddle_re, twiddle_im; - -void init() -{ - -} - - - -/*void update_gpi() { - set_gpi(0, 1); -}*/ - +int stage = 1; +/** + * Executes a single butterfly on ALU 0-3. The inputs are the words taken from + * in, which will be read on various inputs of ALU 0-3. Outputs will be + * returned and will we be available on the output ports of ALU 0 and 2. + */ INLINE struct bf_out butterfly(struct bf_in in) { struct bf_out out; /* ALU 0 & 1 */ /* im(W) * im(b) */ aluexp Wixbi = west(fmul(rd1(in.W_im), rb1(in.b_im))); + /* re(W * b) = re(W) * re(b) - im(W) * im(b) */ aluexp Wxbr = ssub_acc(fmul(rc1(in.W_re), ra1(in.b_re)), Wixbi); + /* re(out_a) = re(a) + re(W * b) */ out.a_re = p0o0(sadd_bf(rb1(in.a_re), Wxbr)); @@ -48,13 +41,18 @@ INLINE struct bf_out butterfly(struct bf_in in) { return out; } +/** + * Writes the output of a butterfly given in res to the correct memory + * locations. + * @param second_half Are we in the second half of the stage? + */ INLINE void write_output_regular(struct mems m, struct bf_out res, bool second_half) { add_offset(m.output_a_re, 2); add_offset(m.output_a_im, 2); add_offset(m.output_b_re, 2); add_offset(m.output_b_im, 2); - if (second_half) { + if (!second_half) { write_mem(m.output_a_re, res.a_re); write_mem(m.output_a_im, res.a_im); write_mem(m.output_b_re, res.b_re); @@ -80,7 +78,7 @@ INLINE void write_output_regular(struct mems m, struct bf_out res, bool second_h */ INLINE struct bf_in read_input_regular(struct mems m, bool cycle_odd, bool stage_odd) { struct bf_in in; - /* TODO: Select left or right memories */ + /* Swap memory a and b during the odd cycles */ if (cycle_odd) { in.a_re = read_mem(m.input_a_re); in.a_im = read_mem(m.input_a_im); @@ -95,22 +93,29 @@ INLINE struct bf_in read_input_regular(struct mems m, bool cycle_odd, bool stage in.W_re = read_mem(m.twiddle_re); in.W_im = read_mem(m.twiddle_im); - + + /* Read inputs sequentially */ add_offset(m.input_a_re, 1); add_offset(m.input_a_im, 1); add_offset(m.input_b_re, 1); add_offset(m.input_b_im, 1); - /* TODO: Update twiddle offsets */ + + /* TODO: Is this true? */ + add_offset(m.twiddle_re, (PARAM_N_t>>stage)); + add_offset(m.twiddle_im, (PARAM_N_t>>stage)); + use_mask(m.twiddle_re, (PARAM_N_t/2)-1); + use_mask(m.twiddle_im, (PARAM_N_t/2)-1); + return in; } /** - * Initializes the addresses for the various memories. + * Initializes the addresses for writing the outputs. * @param stage_odd True if this is an odd stage. - *@param second_half True if we are initing halfway a stage. + * @param second_half True if we are initing halfway a stage. */ INLINE void init_input_addresses_regular(struct mems m, bool stage_odd) { - /* TODO: Select left or right memories */ + /* We simply start reading at address 0 incrementally */ set_base(m.input_a_im, 0); set_base(m.input_b_re, 0); set_base(m.input_b_im, 0); @@ -124,8 +129,11 @@ INLINE void init_input_addresses_regular(struct mems m, bool stage_odd) { set_offset(m.twiddle_re, 0); set_offset(m.twiddle_im, 0); } - - + +/** + * Initializes the addresses for reading the inputs. This function must be + * called twice per stage, since halfway the stage the addressing changes. + */ INLINE void init_output_addresses_regular(struct mems m, bool stage_odd, bool second_half) { /* * For the second half of the stage, the starting addresses are @@ -148,40 +156,70 @@ INLINE void init_output_addresses_regular(struct mems m, bool stage_odd, bool se set_offset(m.output_b_re, 0-2); set_offset(m.output_b_im, 0-2); } else { - set_offset(m.output_a_re, 1-2); - set_offset(m.output_a_im, 1-2); - set_offset(m.output_b_re, 0-2); - set_offset(m.output_b_im, 0-2); + set_offset(m.output_a_re, 0-2); + set_offset(m.output_a_im, 0-2); + set_offset(m.output_b_re, 1-2); + set_offset(m.output_b_im, 1-2); } } INLINE void do_half_regular_stage(struct mems m, bool stage_odd, bool second_half){ + /* + * We are doing two cycles in each iteration, so we can alternate the + * cycle_odd argument (which only works with constants, I don't expect + * the optimizer to do this loop unrolling for us). Since we need to + * write outputs before reading, but don't have any outputs to write + * in the first cycle, we must put the first cycle outside of the + * loop. Since the loop does two cycles at a time, this means there + * must be two cycles outside of the loop, so we put one at the end as + * well. Additionally, we also need to write the outputs of the last + * cycle in an extra cycle at the end. We probably can't combine this + * last cycle with the first cycle of the next stage, because they + * need the same memories (input becomes output and v.v.). + */ + + /* Initialize output addresses, this must be done twice per stage */ + init_output_addresses_regular(m, stage_odd, second_half); + + /* First cycle (no previous output to write) */ struct bf_in in = read_input_regular(m, EVEN_CYCLE, stage_odd); struct bf_out out = butterfly(in); - - /* Now, do a single stage. That means N_t / 2 cycles. Since we do 2 + + /* Now, do half a single stage. That means N_t / 4 cycles. Since we do 2 * cycles on every iteration, plus one before and after the loop, - * we will loop N_t / 4 - 1 times. */ - init_loop(LC2, (N_t / 4) - 1); - do { - init_output_addresses_regular(m, stage_odd, second_half); + * we will loop N_t / 8 - 1 times. We add an extra - 1 because this is a do while loop... */ + init_loop(LC2, (PARAM_N_t / 8) - 1); + while (loop_next(LC2)) { + /* Write outputs of previous cycle */ write_output_regular(m, out, second_half); + /* Odd cycle */ in = read_input_regular(m, ODD_CYCLE, second_half); out = butterfly(in); next_cycle(); + + /* Write outputs of previous cycle */ write_output_regular(m, out, second_half); + /* Even cycle */ in = read_input_regular(m, EVEN_CYCLE, second_half); out = butterfly(in); - } while (loop_next(LC2)); + } + /* Write outputs of previous cycle */ write_output_regular(m, out, second_half); + + /* Last cycle */ in = read_input_regular(m, ODD_CYCLE, second_half); out = butterfly(in); - next_cycle(); + + /* Write outputs of last cycle */ write_output_regular(m, out, second_half); + + /* Force the next cycle, because the next stage must read from + * the memory we just wrote to */ + next_cycle(); } INLINE struct mems init_mem_mapping(bool stage_odd){ @@ -212,23 +250,26 @@ INLINE struct mems init_mem_mapping(bool stage_odd){ return res; } void run() { -#ifdef __MONTIUMCC__ - /* main.cpp will call init before pre_run(), so only need to call init for MontiumCC */ - init(); -#endif do { freeze(); } while (gpi(0) == 0); struct mems m; - - m = init_mem_mapping(EVEN_STAGE); - init_input_addresses_regular(m, EVEN_STAGE); - /* do_half_regular_stage will init output addresses */ - next_cycle(); - do_half_regular_stage(m, EVEN_STAGE, FIRST_HALF); - do_half_regular_stage(m, EVEN_STAGE, SECOND_HALF); - next_cycle(); - init_input_addresses_regular(m, ODD_STAGE); - m = init_mem_mapping(ODD_STAGE); - next_cycle(); - do_half_regular_stage(m, ODD_STAGE, FIRST_HALF); - do_half_regular_stage(m, ODD_STAGE, SECOND_HALF); + + /* We need to do n_t regular stages. Since we do two stages each + * iteration, we'll do n_t / 2 iterations. */ + init_loop(LC1, (PARAM_n_t / 2)); + while (loop_next(LC1)) { + m = init_mem_mapping(EVEN_STAGE); + init_input_addresses_regular(m, EVEN_STAGE); + /* do_half_regular_stage will init output addresses */ + next_cycle(); + do_half_regular_stage(m, EVEN_STAGE, FIRST_HALF); + do_half_regular_stage(m, EVEN_STAGE, SECOND_HALF); + stage++; + next_cycle(); + init_input_addresses_regular(m, ODD_STAGE); + m = init_mem_mapping(ODD_STAGE); + next_cycle(); + do_half_regular_stage(m, ODD_STAGE, FIRST_HALF); + do_half_regular_stage(m, ODD_STAGE, SECOND_HALF); + stage++; + } }