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CλasH

• Small tour: what can we describe in CλasH
• Quick real demo

http://caes.ewi.utwente.nl


What is CλasH?

CλasH: CAES Language for Hardware Descriptions

Rapid prototyping language

Subset of Haskell can be translated to Hardware (VHDL)

Structural Description of a Mealy Machine
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CλasH

Introduction

What is CλasH

What is CλasH?

• We are a Computer Architectures group, this has been a 6
month project, no prior experience with Haskell.
• CλasH is written in Haskell, of course
• CλasH is currently meant for rapid prototyping, not

verification of hardware desigs
• Functional languages are close to Hardware
• We can only translate a subset of Haskell
• All functions are descriptions of Mealy Machines



What again is a Mealy Machine?

Inputs Outputs

Present
State

Combinatorial
Logic

Memory
Elements
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Introduction

Mealy Machine

What again is a Mealy Machine?

• Mealy machine bases its output on current input and
previous state



Haskell Description

mealyMachine ::
InputSignals →
State →
(State,OutputSignals)

mealyMachine inputs state = (new state, output)
where

new state = logic state input
outputs = logic state input

Current state is part of the input

New state is part of the output
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Introduction

Mealy Machine

Haskell Description

• State is part of the function signature
• Both the current state, as the updated State



Simulating a Mealy Machine

run func state [ ] = [ ]
run func state (i : input) = o : out

where
(state ′, o) = func i state
out = run func state ′ input

State behaves like an accumulator
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Introduction

Simulation

Simulating a Mealy Machine

• This is just a quick example of how we can simulate the
mealy machine
• It sort of behaves like MapAccumN



Small Use Case

Small Polymorphic, Higher-Order CPU

Each function is turned into a hardware component

Use of state will be simple
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CλasH

Polymorphic, Higher-Order CPU

Introduction

Small Use Case

• Small ”toy”-example of what can be done in CλasH
• Show what can be translated to Hardware
• Put your hardware glasses on: each function will be a

component
• Use of state will be kept simple



Imports

Import all the built-in types, such as vectors and integers:

import CLasH.HardwareTypes

Import annotations, helps CλasH to find top-level component:

import CLasH.Translator .Annotations
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Polymorphic, Higher-Order CPU

Introduction

Imports

• The first input is always needed, as it contains the builtin
types
• The second one is only needed if you want to make use of

Annotations



Type definitions

First we define some ALU types:

type Op s a = a→ Vector s a→ a
type Opcode = Bit

And some Register types:

type RegBank s a = Vector (s + D1) a
type RegState s a = State (RegBank s a)

And a simple Word type:

type Word = SizedInt D12
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Polymorphic, Higher-Order CPU

Type Definitions

Type definitions

• The first type is already polymorphic, both in size, and
element type
• It’s a small example, so Opcode is just a Bit
• State has to be of the State type to be recognized as such
• SizedInt D12: One concrete type for now, to make the

signatures smaller



Operations

We make a primitive operation:

primOp :: (a→ a→ a)→ Op s a
primOp f a b = a ‘f ‘ a

We make a vector operation:

vectOp :: (a→ a→ a)→ Op s a
vectOp f a b = foldl f a b

We support Higher-Order Functionality
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Polymorphic, Higher-Order CPU

Frameworks for Operations

Operations

• These are just frameworks for ’real’ operations
• Notice how they are High-Order functions



Simple ALU

We define a polymorphic ALU:

alu ::
Op s a→
Op s a→
Opcode → a→ Vector s a→ a

alu op1 op2 Low a b = op1 a b
alu op1 op2 High a b = op2 a b

We support Patter Matching
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Polymorphic, Higher-Order CPU

Polymorphic, Higher-Order ALU

Simple ALU

• Alu is both higher-order, and polymorphic
• We support pattern matching



Register Bank

Make a simple register bank:

registerBank ::
(Some context...)⇒ (RegState s a)→ a→ RangedWord s →
RangedWord s → Bit → ((RegState s a), a)

registerBank (State mem) data in rdaddr wraddr wrenable =
((State mem′), data out)
where

data out = mem ! rdaddr
mem′ | wrenable ≡ Low = mem

| otherwise = replace mem wraddr data in

We support Guards
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Polymorphic, Higher-Order CPU

Register bank

Register Bank

• RangedWord runs from 0 to the upper bound
• mem is statefull
• We support guards



Simple CPU

Combining ALU and register bank:

{−#ANN actual cpu TopEntity#−}
actual cpu ::

(Opcode,Word ,Vector D4 Word ,RangedWord D9 ,
RangedWord D9 ,Bit)→ RegState D9 Word →
(RegState D9 Word ,Word)

actual cpu (opc, a, b, rdaddr ,wraddr ,wren) ram = (ram′, alu out)
where

alu out = alu (primOp (+)) (vectOp (+)) opc ram out b
(ram′, ram out) = registerBank ram a rdaddr wraddr wren

Annotation is used to indicate top-level component
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Polymorphic, Higher-Order CPU

Simple CPU: ALU & Register Bank

Simple CPU

• We use the new Annotion functionality to indicate this is the
top level
• the primOp and vectOp frameworks are now supplied with

real functionality, the plus (+) operations
• No polymorphism or higher-order stuff is allowed at this level.
• Functions must be specialized, and have primitives for input

and output



Demo

We will simulate the small CPU from earlier

Translate that CPU code to VHDL

Simulate the generated VHDL

See the hardware schematic of the synthesized VHDL
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More than just toys

We designed a matrix reduction circuit

Simulation results in Haskell match VHDL simulation results

Synthesis completes without errors or warnings

It runs at half the speed of a hand-coded VHDL design
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Real Hardware Designs

More than just toys

• Toys like the poly cpu one are good to give a quick demo
• But we used CλasH to design ’real’ hardware
• Reduction circuit sums the numbers in a row of a (sparse)

matrix
• Half speed is nice, considering we don’t optimize for speed



So how do you make Hardware from Haskell?

In three simple steps

No Effort:
GHC API Parses, Typechecks and Desugars the Haskell code

Hard:
Transform resulting Core, GHC’s Intermediate Language,
to a normal form

Easy:
Translate Normalized Core to synthesizable VHDL
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How do you make Hardware from Haskell?

So how do you make Hardware from Haskell?

• Here is a quick insight as to how WE translate Haskell to
Hardware
• You can also use TH, like ForSyDe. Or traverse

datastructures, like Lava.



Some final words

Still a lot to do: translate larger subset of Haskell

Real world prototypes can be made in CλasH

CλasH is another great example of how to bring functional
expressivity to hardware designs
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Thank you for listening

CλasH Clone URL:
git://github.com/christiaanb/clash.git

CλasH - From Haskell To Hardware September 3, 2009 17/ 21

git://github.com/christiaanb/clash.git


Complete signature for registerBank

registerBank ::
(NaturalT s
,PositiveT (s + D1)
, ((s + D1) > s)∼True))⇒
(RegState s a)→ a→ RangedWord s →
RangedWord s → Bit → ((RegState s a), a)
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