1 {-# LANGUAGE PackageImports #-}
3 -- Functions to bring a Core expression in normal form. This module provides a
4 -- top level function "normalize", and defines the actual transformation passes that
7 module Normalize (normalizeModule) where
11 import qualified Maybe
12 import qualified "transformers" Control.Monad.Trans as Trans
13 import qualified Control.Monad as Monad
14 import qualified Control.Monad.Trans.Writer as Writer
15 import qualified Data.Map as Map
16 import qualified Data.Monoid as Monoid
21 import qualified UniqSupply
22 import qualified CoreUtils
26 import qualified VarSet
27 import qualified CoreFVs
28 import qualified CoreUtils
29 import qualified MkCore
30 import Outputable ( showSDoc, ppr, nest )
37 --------------------------------
38 -- Start of transformations
39 --------------------------------
41 --------------------------------
43 --------------------------------
44 eta, etatop :: Transform
45 eta expr | is_fun expr && not (is_lam expr) = do
46 let arg_ty = (fst . Type.splitFunTy . CoreUtils.exprType) expr
47 id <- mkInternalVar "param" arg_ty
48 change (Lam id (App expr (Var id)))
49 -- Leave all other expressions unchanged
51 etatop = notapplied ("eta", eta)
53 --------------------------------
55 --------------------------------
56 beta, betatop :: Transform
57 -- Substitute arg for x in expr
58 beta (App (Lam x expr) arg) = change $ substitute [(x, arg)] expr
59 -- Propagate the application into the let
60 beta (App (Let binds expr) arg) = change $ Let binds (App expr arg)
61 -- Propagate the application into each of the alternatives
62 beta (App (Case scrut b ty alts) arg) = change $ Case scrut b ty' alts'
64 alts' = map (\(con, bndrs, expr) -> (con, bndrs, (App expr arg))) alts
65 ty' = CoreUtils.applyTypeToArg ty arg
66 -- Leave all other expressions unchanged
67 beta expr = return expr
68 -- Perform this transform everywhere
69 betatop = everywhere ("beta", beta)
71 --------------------------------
72 -- let recursification
73 --------------------------------
74 letrec, letrectop :: Transform
75 letrec (Let (NonRec b expr) res) = change $ Let (Rec [(b, expr)]) res
76 -- Leave all other expressions unchanged
77 letrec expr = return expr
78 -- Perform this transform everywhere
79 letrectop = everywhere ("letrec", letrec)
81 --------------------------------
83 --------------------------------
84 letsimpl, letsimpltop :: Transform
85 -- Don't simplifiy lets that are already simple
86 letsimpl expr@(Let _ (Var _)) = return expr
87 -- Put the "in ..." value of a let in its own binding, but not when the
88 -- expression is applicable (to prevent loops with inlinefun).
89 letsimpl (Let (Rec binds) expr) | not $ is_applicable expr = do
90 id <- mkInternalVar "foo" (CoreUtils.exprType expr)
92 change $ Let (Rec (bind:binds)) (Var id)
93 -- Leave all other expressions unchanged
94 letsimpl expr = return expr
95 -- Perform this transform everywhere
96 letsimpltop = everywhere ("letsimpl", letsimpl)
98 --------------------------------
100 --------------------------------
101 letflat, letflattop :: Transform
102 letflat (Let (Rec binds) expr) = do
103 -- Turn each binding into a list of bindings (possibly containing just one
104 -- element, of course)
105 bindss <- Monad.mapM flatbind binds
106 -- Concat all the bindings
107 let binds' = concat bindss
108 -- Return the new let. We don't use change here, since possibly nothing has
109 -- changed. If anything has changed, flatbind has already flagged that
111 return $ Let (Rec binds') expr
113 -- Turns a binding of a let into a multiple bindings, or any other binding
114 -- into a list with just that binding
115 flatbind :: (CoreBndr, CoreExpr) -> TransformMonad [(CoreBndr, CoreExpr)]
116 flatbind (b, Let (Rec binds) expr) = change ((b, expr):binds)
117 flatbind (b, expr) = return [(b, expr)]
118 -- Leave all other expressions unchanged
119 letflat expr = return expr
120 -- Perform this transform everywhere
121 letflattop = everywhere ("letflat", letflat)
123 --------------------------------
124 -- Simple let binding removal
125 --------------------------------
126 -- Remove a = b bindings from let expressions everywhere
127 letremovetop :: Transform
128 letremovetop = everywhere ("letremove", inlinebind (\(b, e) -> case e of (Var v) -> True; otherwise -> False))
130 --------------------------------
132 --------------------------------
133 -- Remove a = B bindings, with B :: a -> b, or B :: forall x . T, from let
134 -- expressions everywhere. This means that any value that still needs to be
135 -- applied to something else (polymorphic values need to be applied to a
136 -- Type) will be inlined, and will eventually be applied to all their
139 -- This is a tricky function, which is prone to create loops in the
140 -- transformations. To fix this, we make sure that no transformation will
141 -- create a new let binding with a function type. These other transformations
142 -- will just not work on those function-typed values at first, but the other
143 -- transformations (in particular β-reduction) should make sure that the type
144 -- of those values eventually becomes primitive.
145 inlinefuntop :: Transform
146 inlinefuntop = everywhere ("inlinefun", inlinebind (is_applicable . snd))
148 --------------------------------
149 -- Scrutinee simplification
150 --------------------------------
151 scrutsimpl,scrutsimpltop :: Transform
152 -- Don't touch scrutinees that are already simple
153 scrutsimpl expr@(Case (Var _) _ _ _) = return expr
154 -- Replace all other cases with a let that binds the scrutinee and a new
155 -- simple scrutinee, but not when the scrutinee is applicable (to prevent
156 -- loops with inlinefun, though I don't think a scrutinee can be
158 scrutsimpl (Case scrut b ty alts) | not $ is_applicable scrut = do
159 id <- mkInternalVar "scrut" (CoreUtils.exprType scrut)
160 change $ Let (Rec [(id, scrut)]) (Case (Var id) b ty alts)
161 -- Leave all other expressions unchanged
162 scrutsimpl expr = return expr
163 -- Perform this transform everywhere
164 scrutsimpltop = everywhere ("scrutsimpl", scrutsimpl)
166 --------------------------------
167 -- Case binder wildening
168 --------------------------------
169 casewild, casewildtop :: Transform
170 casewild expr@(Case scrut b ty alts) = do
171 (bindingss, alts') <- (Monad.liftM unzip) $ mapM doalt alts
172 let bindings = concat bindingss
173 -- Replace the case with a let with bindings and a case
174 let newlet = (Let (Rec bindings) (Case scrut b ty alts'))
175 -- If there are no non-wild binders, or this case is already a simple
176 -- selector (i.e., a single alt with exactly one binding), already a simple
177 -- selector altan no bindings (i.e., no wild binders in the original case),
178 -- don't change anything, otherwise, replace the case.
179 if null bindings || length alts == 1 && length bindings == 1 then return expr else change newlet
181 -- Generate a single wild binder, since they are all the same
183 -- Wilden the binders of one alt, producing a list of bindings as a
185 doalt :: CoreAlt -> TransformMonad ([(CoreBndr, CoreExpr)], CoreAlt)
186 doalt (con, bndrs, expr) = do
187 bindings_maybe <- Monad.zipWithM mkextracts bndrs [0..]
188 let bindings = Maybe.catMaybes bindings_maybe
189 -- We replace the binders with wild binders only. We can leave expr
190 -- unchanged, since the new bindings bind the same vars as the original
192 let newalt = (con, wildbndrs, expr)
193 return (bindings, newalt)
195 -- Make all binders wild
196 wildbndrs = map (\bndr -> Id.mkWildId (Id.idType bndr)) bndrs
197 -- Creates a case statement to retrieve the ith element from the scrutinee
198 -- and binds that to b.
199 mkextracts :: CoreBndr -> Int -> TransformMonad (Maybe (CoreBndr, CoreExpr))
201 if is_wild b || Type.isFunTy (Id.idType b)
202 -- Don't create extra bindings for binders that are already wild, or
203 -- for binders that bind function types (to prevent loops with
207 -- Create on new binder that will actually capture a value in this
208 -- case statement, and return it
209 let bty = (Id.idType b)
210 id <- mkInternalVar "sel" bty
211 let binders = take i wildbndrs ++ [id] ++ drop (i+1) wildbndrs
212 return $ Just (b, Case scrut b bty [(con, binders, Var id)])
213 -- Leave all other expressions unchanged
214 casewild expr = return expr
215 -- Perform this transform everywhere
216 casewildtop = everywhere ("casewild", casewild)
218 --------------------------------
219 -- Case value simplification
220 --------------------------------
221 casevalsimpl, casevalsimpltop :: Transform
222 casevalsimpl expr@(Case scrut b ty alts) = do
223 -- Try to simplify each alternative, resulting in an optional binding and a
225 (bindings_maybe, alts') <- (Monad.liftM unzip) $ mapM doalt alts
226 let bindings = Maybe.catMaybes bindings_maybe
227 -- Create a new let around the case, that binds of the cases values.
228 let newlet = Let (Rec bindings) (Case scrut b ty alts')
229 -- If there were no values that needed and allowed simplification, don't
231 if null bindings then return expr else change newlet
233 doalt :: CoreAlt -> TransformMonad (Maybe (CoreBndr, CoreExpr), CoreAlt)
234 -- Don't simplify values that are already simple
235 doalt alt@(con, bndrs, Var _) = return (Nothing, alt)
236 -- Simplify each alt by creating a new id, binding the case value to it and
237 -- replacing the case value with that id. Only do this when the case value
238 -- does not use any of the binders bound by this alternative, for that would
239 -- cause those binders to become unbound when moving the value outside of
240 -- the case statement. Also, don't create a binding for applicable
241 -- expressions, to prevent loops with inlinefun.
242 doalt (con, bndrs, expr) | (not usesvars) && (not $ is_applicable expr) = do
243 id <- mkInternalVar "caseval" (CoreUtils.exprType expr)
244 -- We don't flag a change here, since casevalsimpl will do that above
245 -- based on Just we return here.
246 return $ (Just (id, expr), (con, bndrs, Var id))
247 -- Find if any of the binders are used by expr
248 where usesvars = (not . VarSet.isEmptyVarSet . (CoreFVs.exprSomeFreeVars (`elem` bndrs))) expr
249 -- Don't simplify anything else
250 doalt alt = return (Nothing, alt)
251 -- Leave all other expressions unchanged
252 casevalsimpl expr = return expr
253 -- Perform this transform everywhere
254 casevalsimpltop = everywhere ("casevalsimpl", casevalsimpl)
256 --------------------------------
258 --------------------------------
259 -- Remove case statements that have only a single alternative and only wild
261 caseremove, caseremovetop :: Transform
262 -- Replace a useless case by the value of its single alternative
263 caseremove (Case scrut b ty [(con, bndrs, expr)]) | not usesvars = change expr
264 -- Find if any of the binders are used by expr
265 where usesvars = (not . VarSet.isEmptyVarSet . (CoreFVs.exprSomeFreeVars (`elem` bndrs))) expr
266 -- Leave all other expressions unchanged
267 caseremove expr = return expr
268 -- Perform this transform everywhere
269 caseremovetop = everywhere ("caseremove", caseremove)
271 --------------------------------
272 -- Application simplification
273 --------------------------------
274 -- Make sure that all arguments in an application are simple variables.
275 appsimpl, appsimpltop :: Transform
276 -- Don't simplify arguments that are already simple
277 appsimpl expr@(App f (Var _)) = return expr
278 -- Simplify all non-applicable (to prevent loops with inlinefun) arguments,
279 -- except for type arguments (since a let can't bind type vars, only a lambda
280 -- can). Do this by introducing a new Let that binds the argument and passing
281 -- the new binder in the application.
282 appsimpl (App f expr) | (not $ is_applicable expr) && (not $ CoreSyn.isTypeArg expr) = do
283 id <- mkInternalVar "arg" (CoreUtils.exprType expr)
284 change $ Let (Rec [(id, expr)]) (App f (Var id))
285 -- Leave all other expressions unchanged
286 appsimpl expr = return expr
287 -- Perform this transform everywhere
288 appsimpltop = everywhere ("appsimpl", appsimpl)
291 --------------------------------
292 -- Type argument propagation
293 --------------------------------
294 -- Remove all applications to type arguments, by duplicating the function
295 -- called with the type application in its new definition. We leave
296 -- dictionaries that might be associated with the type untouched, the funprop
297 -- transform should propagate these later on.
298 typeprop, typeproptop :: Transform
299 -- Transform any function that is applied to a type argument. Since type
300 -- arguments are always the first ones to apply and we'll remove all type
301 -- arguments, we can simply do them one by one. We only propagate type
302 -- arguments without any free tyvars, since tyvars those wouldn't be in scope
303 -- in the new function.
304 typeprop expr@(App (Var f) arg@(Type ty)) | not $ has_free_tyvars arg = do
305 body_maybe <- Trans.lift $ getGlobalBind f
308 let newbody = App body (Type ty)
309 -- Create a new function with the same name but a new body
310 newf <- mkFunction f newbody
311 -- Replace the application with this new function
313 -- If we don't have a body for the function called, leave it unchanged (it
314 -- should be a primitive function then).
315 Nothing -> return expr
316 -- Leave all other expressions unchanged
317 typeprop expr = return expr
318 -- Perform this transform everywhere
319 typeproptop = everywhere ("typeprop", typeprop)
322 --------------------------------
323 -- Function-typed argument propagation
324 --------------------------------
325 -- Remove all applications to function-typed arguments, by duplication the
326 -- function called with the function-typed parameter replaced by the free
327 -- variables of the argument passed in.
328 funprop, funproptop :: Transform
329 -- Transform any application of a named function (i.e., skip applications of
330 -- lambda's). Also skip applications that have arguments with free type
331 -- variables, since we can't inline those.
332 funprop expr@(App _ _) | is_var fexpr && not (any has_free_tyvars args) = do
333 -- Find the body of the function called
334 body_maybe <- Trans.lift $ getGlobalBind f
337 -- Process each of the arguments in turn
338 (args', changed) <- Writer.listen $ mapM doarg args
339 -- See if any of the arguments changed
340 case Monoid.getAny changed of
342 let (newargs', newparams', oldargs) = unzip3 args'
343 let newargs = concat newargs'
344 let newparams = concat newparams'
345 -- Create a new body that consists of a lambda for all new arguments and
346 -- the old body applied to some arguments.
347 let newbody = MkCore.mkCoreLams newparams (MkCore.mkCoreApps body oldargs)
348 -- Create a new function with the same name but a new body
349 newf <- mkFunction f newbody
350 -- Replace the original application with one of the new function to the
352 change $ MkCore.mkCoreApps (Var newf) newargs
354 -- Don't change the expression if none of the arguments changed
357 -- If we don't have a body for the function called, leave it unchanged (it
358 -- should be a primitive function then).
359 Nothing -> return expr
361 -- Find the function called and the arguments
362 (fexpr, args) = collectArgs expr
365 -- Process a single argument and return (args, bndrs, arg), where args are
366 -- the arguments to replace the given argument in the original
367 -- application, bndrs are the binders to include in the top-level lambda
368 -- in the new function body, and arg is the argument to apply to the old
370 doarg :: CoreExpr -> TransformMonad ([CoreExpr], [CoreBndr], CoreExpr)
371 doarg arg | is_fun arg = do
372 bndrs <- Trans.lift getGlobalBinders
373 -- Find interesting free variables, each of which should be passed to
374 -- the new function instead of the original function argument.
376 -- Interesting vars are those that are local, but not available from the
377 -- top level scope (functions from this module are defined as local, but
378 -- they're not local to this function, so we can freely move references
379 -- to them into another function).
380 let interesting var = Var.isLocalVar var && (not $ var `elem` bndrs)
381 let free_vars = VarSet.varSetElems $ CoreFVs.exprSomeFreeVars interesting arg
382 -- Mark the current expression as changed
384 return (map Var free_vars, free_vars, arg)
385 -- Non-functiontyped arguments can be unchanged. Note that this handles
386 -- both values and types.
388 -- TODO: preserve original naming?
389 id <- mkBinderFor arg "param"
390 -- Just pass the original argument to the new function, which binds it
391 -- to a new id and just pass that new id to the old function body.
392 return ([arg], [id], mkReferenceTo id)
393 -- Leave all other expressions unchanged
394 funprop expr = return expr
395 -- Perform this transform everywhere
396 funproptop = everywhere ("funprop", funprop)
399 -- TODO: introduce top level let if needed?
401 --------------------------------
402 -- End of transformations
403 --------------------------------
408 -- What transforms to run?
409 transforms = [typeproptop, funproptop, etatop, betatop, letremovetop, letrectop, letsimpltop, letflattop, casewildtop, scrutsimpltop, casevalsimpltop, caseremovetop, inlinefuntop, appsimpltop]
411 -- Turns the given bind into VHDL
413 UniqSupply.UniqSupply -- ^ A UniqSupply we can use
414 -> [(CoreBndr, CoreExpr)] -- ^ All bindings we know (i.e., in the current module)
415 -> [CoreBndr] -- ^ The bindings to generate VHDL for (i.e., the top level bindings)
416 -> [Bool] -- ^ For each of the bindings to generate VHDL for, if it is stateful
417 -> [(CoreBndr, CoreExpr)] -- ^ The resulting VHDL
419 normalizeModule uniqsupply bindings generate_for statefuls = runTransformSession uniqsupply $ do
420 -- Put all the bindings in this module in the tsBindings map
421 putA tsBindings (Map.fromList bindings)
422 -- (Recursively) normalize each of the requested bindings
423 mapM normalizeBind generate_for
424 -- Get all initial bindings and the ones we produced
425 bindings_map <- getA tsBindings
426 let bindings = Map.assocs bindings_map
427 normalized_bindings <- getA tsNormalized
428 -- But return only the normalized bindings
429 return $ filter ((flip VarSet.elemVarSet normalized_bindings) . fst) bindings
431 normalizeBind :: CoreBndr -> TransformSession ()
433 -- Skip binders that have a polymorphic type, since it's impossible to
434 -- create polymorphic hardware.
435 if is_poly (Var bndr)
437 -- This should really only happen at the top level... TODO: Give
438 -- a different error if this happens down in the recursion.
439 error $ "Function " ++ show bndr ++ " is polymorphic, can't normalize"
441 normalized_funcs <- getA tsNormalized
442 -- See if this function was normalized already
443 if VarSet.elemVarSet bndr normalized_funcs
445 -- Yup, don't do it again
448 -- Nope, note that it has been and do it.
449 modA tsNormalized (flip VarSet.extendVarSet bndr)
450 expr_maybe <- getGlobalBind bndr
453 -- Introduce an empty Let at the top level, so there will always be
454 -- a let in the expression (none of the transformations will remove
456 let expr' = Let (Rec []) expr
457 -- Normalize this expression
458 trace ("Transforming " ++ (show bndr) ++ "\nBefore:\n\n" ++ showSDoc ( ppr expr' ) ++ "\n") $ return ()
459 expr' <- dotransforms transforms expr'
460 trace ("\nAfter:\n\n" ++ showSDoc ( ppr expr')) $ return ()
461 -- And store the normalized version in the session
462 modA tsBindings (Map.insert bndr expr')
463 -- Find all vars used with a function type. All of these should be global
464 -- binders (i.e., functions used), since any local binders with a function
465 -- type should have been inlined already.
466 let used_funcs_set = CoreFVs.exprSomeFreeVars (\v -> (Type.isFunTy . snd . Type.splitForAllTys . Id.idType) v) expr'
467 let used_funcs = VarSet.varSetElems used_funcs_set
468 -- Process each of the used functions recursively
469 mapM normalizeBind used_funcs
471 -- We don't have a value for this binder, let's assume this is a builtin
472 -- function. This might need some extra checking and a nice error